

Empowering Language Basic Users: Active Methodologies for Teaching ESP in Agroindustry Education

Gloria Isabel Escudero*

Escuela Superior Politécnica de Chimborazo
Riobamba, Ecuador

Mercedes Rico

University of Extremadura
Merida, Spain

Abstract. Teaching English for Specific Purposes (ESP) mainly targets students with intermediate to advanced language skills. The Common European Framework of Reference for Languages (CEFR) includes descriptors for the B1 level and above in professional contexts. Although research has explored ways in which to teach ESP to basic language learners, most studies have focused on specific language points rather than professional skills. This study aimed to assess how active methodologies influence the development of communicative professional skills in basic language users. To achieve this, findings from a needs analysis were organized into a proposal to identify a methodology that meets the learning needs of low-proficiency students (A1+ - A2) as well as the demands of the agroindustry. The methodology involved the implementation of a 20-week program including task-based learning (TBL), flipped learning, gamification, and social and emotional learning (SEL). Data collection included a pre-test, a post-test, and an achievement test after each methodology. Additionally, the instructor's field notes and an open-ended survey provided qualitative insights into the intervention. The key findings showed that active methodologies and social and emotional learning principles help reduce learners' differences and meet their needs by creating a supportive environment that promotes the development of professional skills. The participants recommended increased practice, preparation, and commitment to learning to ensure the continuity and success of the ESP program.

Keywords: Active methodologies; Agroindustry; English for Specific Purposes (ESP); Low-proficiency learners.

*Corresponding author: Gloria Isabel Escudero; gloria.escudero@espoch.edu.ec

1. Introduction

English language teaching in Ecuadorian higher education is mandatory until students reach the B1 level (Consejo de Educación Superior, 2021). Specifically, the Escuela Superior Politécnica de Chimborazo (ESPOCH) includes English as a required subject during the early years of instruction. At the same time, English language professors must address content related to the students' majors.

Incorporating English for Specific Purposes (ESP) at lower levels presents challenges for both students and professors because of the difficulty in integrating materials that develop professional communication skills while also laying the foundations of a new language (Trujeque-Moreno et al., 2021). To date, some studies have explored ESP for basic-language users in specific areas (Aulestia-Vallejo & Cuenca-Fernández, 2021; Brzoza, 2020; Zhang et al., 2023) and have provided valuable insights. However, research focusing on the communicative needs of agroindustrial stakeholders in the professional field, rather than merely specific language points, is crucial.

The term agroindustry was first defined in the 1950s within the context of international affairs, encompassing both agriculture and industry. Agroindustry refers to “businesses that process, package, and distribute agricultural products...It connects farmers to markets by transforming raw materials...This sector is vital in adding value to farm products and creating jobs” (Quickbytes Education, 2024, para. 1). The evolving nature of agroindustry necessitates changes in educational systems' structure, organization, forms, and training methods to bridge the gap that remains between education and industry (Alam et al., 2024).

Thus, it is essential to equip students in this field with the tools needed to thrive in a country with a growing agriculture-based economy (Pro Ecuador, 2025) and a globalized world in which they aspire to find their place. Therefore, mastering English in the agroindustry field is essential for increasing international opportunities, expanding markets, and enhancing employability, which are key goals of higher education (UNESCO, 2025).

Akash and Suganya (2024) reported that ESP courses sometimes depend on social skills or outdated content, with limited industry contributions to develop plans and programs. Therefore, a needs analysis involving three interest groups (students, professors, and professionals in the agroindustry) was conducted to identify the most essential communicative tasks to include in a course program. The program aims to enable instructors to adopt a methodology tailored to the learning needs of low-proficiency students in the agroindustry field, with the goal of increasing their job readiness and bridging the gap between academia and the workplace.

1.1 Research questions

1.1.1. To what extent do active methodologies influence the development of professional communication skills for basic language users during ESP training?

- 1.1.2. How do participants' low language proficiency and demographic factors affect their ability to complete communicative tasks in a professional setting?
- 1.1.3. How do basic language users perceive the usefulness and impact of active methodologies in developing their professional language skills?

2. Literature Review

2.1 Evolution of ESP

Through needs analyses and the development of specialized courses, English language teaching has evolved to satisfy the needs of the industry. These ESP courses have undergone a series of changes through the years. For instance, they initially focused on grammar and lexis, mainly in science and technology, but little attention was paid to language in real contexts (Swales, 1988 as cited in Johns, 2013). From the 1970s to the 1980s, according to Yanhua and Guangwei (2021), ESP examined the ways in which sentences were combined in texts and consulted experts in decision-making, even though the topics remained centered on science and technology (Erasmus, 2023). Later, it evolved into a register analysis, emphasizing the core terminology of technical fields in spoken English (Daulay, 2019). This linguistic revolution marked a significant step that contributed to the rapid advancement of ESP.

From the 1990s to the present day, ESP has expanded to include corpus analysis, needs analysis, genre analysis, linguistic devices, and rhetorical moves (Shahid et al., 2023). Additionally, sublanguages, target situations, texts, and the mechanisms involved in language assimilation have been introduced (Necheporuk, 2022). World Englishes for Specific Purposes (WESP) constituted a further consideration when analyzing participants from various contexts to meet globalized professional practices. Corpus research and genre-based methodologies have led to data-driven approaches (Stojković, 2018), with computer-mediated communication and technology proving essential tools (Erasmus, 2023). The evolution of ESP research methods and focus areas provides crucial insights for creating effective teaching strategies in specific contexts, such as agroindustry education.

2.2 ESP in technical and agro-industrial contexts

Despite these advancements in education, the industry continues to perceive a gap between what is taught in higher education and what is required in the workplace (Alam et al., 2024). Petraki and Khat (2022) stated that ESP STEM courses are not developing the necessary skills due to a lack of qualified ESP trainers, limited motivation among professors, low English proficiency among students, inadequate teaching materials and facilities, and insufficient collaboration among stakeholders. Furthermore, ESP courses are sometimes combined with general content, or programs may not be updated due to limited stakeholder contributions, thereby hindering the development of ESP programs that meet real industry needs (Akash & Suganya, 2024).

Therefore, in order to address these challenges, it is crucial to implement targeted teacher training, create context-specific teaching materials, and encourage

collaboration between educators and industry professionals (Akash & Suganya, 2024). Kumar and Rewari (2022) emphasized the importance of integrating soft skills, technological skills, and ethical considerations into higher education programs, thereby enhancing graduates' skill development and professional readiness for improved performance and adaptability in their respective fields.

In this context, a few studies have emerged, addressing agroindustry and English teaching. Amna and Idriani (2019) first conducted a needs analysis, identifying that students needed more practical vocabulary, listening practice, and reading materials related to agroindustrial contexts. They recommended that ESP modules should be aligned with industry-specific terminology and real-life communication tasks. A second study developed a multimedia module to meet these needs, including animated visuals and interactive exercises that enhanced learners' engagement and understanding (Idriani & Amna, 2019). Incorporating authentic agroindustry content into English instruction has been proven to increase the retention and application of language skills in professional settings.

Studies in similar areas, such as agribusiness and agriculture, have highlighted that job performance can be enhanced by addressing the linguistic needs of learners; these include writing reports and technical documents, handling customer relations (Akash & Suganya, 2024) as well as developing such skills as effective communication, problem-solving, and the ability to work collaboratively (Richter et al., 2016). In addition, Olatunji and Allinson (2024) emphasized that the literature on English language learning has shaped the evolution of China's agroindustry. China is among the leading agricultural rice producers worldwide; therefore, its practices need to be translated into English in order to share its advances and best practices in agroindustry with the global community.

2.3 Active methodologies in ESP

In today's era of critical thinking, technology, reflection, and problem-solving, it is essential to incorporate these strategies into industry teaching (Alam et al., 2024). Active methods such as flipped learning, task-based learning (TBL), project-based learning, case studies, and gamification have transformed the learning process, turning students from passive recipients into proactive participants (El-Thalji, 2025). Such methods have proven effective in ESP, helping students to develop critical thinking and problem-solving skills, as well as fostering greater autonomy and responsibility.

Although social and emotional learning (SEL) does not constitute a method, it is nevertheless a "promising pedagogy for ESOL educators" (Pentón, 2020, p.1), which is suitable for supporting the personal and academic growth of adult learners at all levels of education (Casel.org, n.d.; Teba et al., 2023). These active approaches create student-centered environments that emphasize engagement and participation, leading to better learning outcomes and professional skill development (Baby & Sabtan, 2022). In turn, this fosters greater flexibility and adaptability across various industry contexts (Li & Wang, 2023; Mulyadi et al., 2021).

Furthermore, it has also been noted that active methodologies offer both benefits and challenges for basic language users. For instance, Quinonez-Beltrán et al. (2023) implemented active reading strategies with A1 English language learners and found that participants benefited from structured, engaging tasks that helped them understand written texts. Also, these strategies support tasks that are often difficult for basic language users, such as identifying main ideas, predicting content from images, and outlining texts. Similarly, Hashim et al. (2025) explored the use of TBL with ICT support to develop soft skills in higher education students. Findings revealed that TBL improved communication, digital literacy, and teamwork.

However, completing tasks often requires a higher level of language proficiency, which can limit participation and learning for students at levels A1 and A2. Flipped learning can be helpful but also presents challenges for low-proficiency learners who have not yet developed self-regulation and autonomy (Lightbown & Spada, 2021). Nevertheless, having time at home to complete activities allows these learners to process information and prepare for in-class tasks. Overall, active methodologies are seen as the shift educational institutions need to make in order to foster successful learners.

Given this background, the traditional method of teaching English in technical schools often leads to inadequate learning for today's international students (Amna & Idriani, 2019). Indeed, Alam et al. (2024) identified a barrier faced by graduates seeking employment due to a mismatch between their skills and the needs of the job market. Therefore, it is essential to develop a more effective approach that emphasizes student interaction, authentic learning, cultural awareness, and the balanced development of both hard and soft skills to support real-world communication.

2.4 ESP challenges for low-proficiency learners

English proficiency is gauged by can-do statements; in other words, it describes specific communicative tasks and rates the performance of L2 learners in undertaking those tasks. The CEFR identifies six levels of proficiency (A1-C2), which are grouped into categories of basic, independent, and proficient users, each of which describes the progression of skill mastery. Basic users (A1 and A2) are characterized by their use of language that is "familiar," "short," "simple," and "rehearsed" in the context of an immediate need. On the other hand, levels B1 and above encompass more complex language descriptors, including those relating to a wide range of subjects within their field of interest and requiring reasonable precision (Council of Europe, 2020, p.10).

In this context, this study seeks a methodology that better meets the learning needs of basic learners in an English for Specific Purposes (ESP) program. It has been emphasized that language proficiency determines success in learning academic or professional content in English, such as in ESP, English-Medium Instruction (EMI), and Content and Language Integrated Learning (CLIL) approaches (Lin & Lei, 2021; Murali & Chaitanya, 2023; Zhang et al., 2023). However, as previously noted, there is an ongoing need to address English for

university careers, which should not pose a challenge due to the Ministry of Education's plan for students to achieve the B1 level by the end of high school (Ministerio de Educación del Ecuador, 2016). Unfortunately, English proficiency among high school leavers remains low (EF Education First, 2024), and only a small number of students enter university with the desired proficiency level. Therefore, universities need to provide English language instruction starting from elementary levels, making the design of ESP programs critical, since it involves addressing the unique needs of low-proficiency learners as well as the specific requirements of each major (Térnava-Osmani & Brestovci, 2024).

To address the challenges of using a GE syllabus and ESP requirements, as often happens in universities, some professors include authentic materials, mainly reading texts and videos, in their general English lessons (Petraki & Khat, 2022). However, these materials are not always adapted to the unit content, aligned with the unit objectives, or tailored to the specific needs of the students. Therefore, researchers in the field recommend designing an ESP course that is applicable even for beginners, as long as their specific needs are addressed and activities and skill development are balanced (Hutchinson & Waters, 1987).

In contrast, Dudley-Evans and St John (1998) recommend focusing strongly on general English before introducing ESP. However, they concur that such courses can merge at lower levels, confirming the necessity of adapting materials to the learners' language proficiency. This aligns with Basturkmen (2010), who suggests gradually reducing general English content, based on the proficiency level, including teaching high-frequency words related to the learners' fields, and embedding ESP content in communicative and contextualized tasks.

Recent ESP studies for low-proficiency learners have primarily focused on discrete skills and subskills, such as vocabulary (Aulestia-Vallejo & Cuenca-Fernández, 2021; Brzoza, 2020), reading, and oral fluency (Zhang et al., 2023) and have provided valid findings that are worthy of consideration. For instance, Aulestia-Vallejo and Cuenca-Fernández (2021), who tested students' ability to translate words from Spanish to English and English to Spanish, as well as their ability to complete words in context, noted that reading comprehension significantly increased among students once their content-related needs had been taken into account.

Similarly, Brzoza (2020) examined receptive skills and vocabulary among mixed-ability students ranging from A2 and below to B2. Both studies highlighted that content-related sessions boosted motivation for low-proficiency learners when engaging with discipline-specific texts. Furthermore, Zhang et al. (2023) found that English proficiency correlated positively with ESP public speaking abilities when measuring language accuracy and appropriateness, organizational structure, delivery, pronunciation, and audience engagement. This indicates that language proficiency determines oral performance in ESP. Finally, ESP technology-enhanced environments bring many benefits to learners' progress, based on their commitment and engagement (Li & Wang, 2023; Mulyadi et al., 2021).

Nevertheless, alongside the positive effects, significant challenges remain. For example, Brzoza (2020) noted that participants experienced feelings of inferiority and faced greater difficulties in tackling content-specific tasks. Additionally, they struggled to keep pace with the curriculum designed for B1 learners. Trujeque-Moreno et al. (2021) transitioned from GE to ESP with students who had limited prior exposure to English and low abilities in using the language in academic or professional contexts.

They remarked on the challenges of working with students who struggled with grammar, vocabulary, and language skills, which affected their performance in ESP-specific tasks. Also, their limited listening skills hindered their understanding of instructions, and they relied on their L1 to comprehend the reading material. Finally, Ternava-Osmani and Brestovci (2024) found that, when assessed for their readiness to take ESP classes, students with higher proficiency levels were more likely to embrace the challenges of ESP.

As a result, instructors have highlighted the need for instructional strategies that accommodate lower proficiency levels (Trujeque-Moreno et al., 2021). They emphasized the importance of progressively introducing ESP content at lower levels and using scaffolding as an effective tool with which to address language needs (Aulestia-Vallejo & Cuenca-Fernández, 2021). Additionally, Trujeque-Moreno et al. (2021) reported that, when the input was relevant and manageable, task-based learning rendered meaningful communicative tasks accessible to lower-proficiency learners. Furthermore, motivation increased because the English content met their professional needs. Finally, they emphasized that it is essential for every teacher to listen to students' views regarding their needs and added that addressing students' feelings toward the subject should not be overlooked.

Based on the previous studies, several factors must be considered when working with ESP basic language students. For example, professional tasks involve interconnected skills, rather than focusing solely on one isolated language aspect (Lightbown & Spada, 2021). Therefore, even though studies report results on individual language points (Aulestia-Vallejo & Cuenca-Fernández, 2018; Brzoza, 2020; Zhang et al., 2023), it is necessary to assess students' performance in professional tasks and to determine whether their language proficiency improves over time, as students develop their professional skills.

Additionally, it is important to identify other methodological considerations that language instructors should keep in mind when teaching ESP to agroindustry majors from the start of their college courses. Therefore, this study contributes to the understanding of ESP at basic levels of proficiency and addresses an important gap in the underexplored field of ESP in the agroindustry.

3. Methodology

3.1 Methodology and procedures

An explanatory sequential mixed-methods approach was employed to examine the effectiveness of active methodologies in teaching ESP to low-proficiency learners. During the first stage, a needs analysis was conducted with agroindustry stakeholders (students, professors, and workers), who ranked their tasks in terms of priority in an online survey created by informants from all three groups and the language professor. As a result, those tasks that are most important and most frequently needed for effective performance within their context were identified.

For the pedagogical intervention, a quasi-experimental pre-test-post-test non-equivalent groups design was chosen due to the impracticality of student randomization. Two distinct groups—including an experimental group ($n = 23$) and a control group ($n = 19$)—participated in a 20-week treatment, during which the principles of task-based learning, flipped learning, gamification, and social and emotional learning were applied for six hours weekly over the course of five weeks (sessions included four hours in class and two hours of online lessons per week). The control group was taught using a traditional methodology (grammar translation), primarily involving explanations of grammatical rules and the use of L1 to convey meaning (Babayev, 2023).

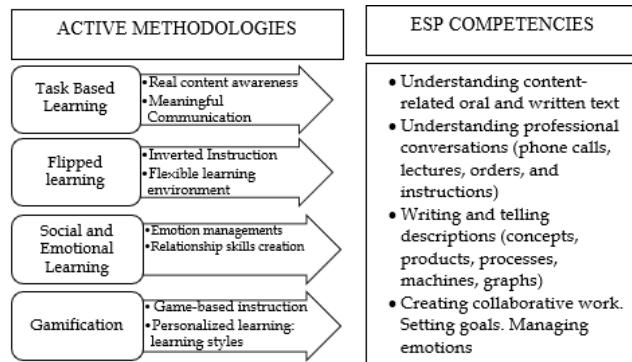
Regarding the data collection instruments, a series of tests were used. First, the “shape it” placement test from Cambridge was employed to assess students’ current entry level. Next, a pre-test was developed with tasks identified as priorities during the needs analysis and validated by experts in the fields of language and agroindustry. The same test was later used as a post-test. After each methodology, an achievement test was administered during the treatment. The researcher designed these tests following the same structure and experts’ recommendations for the pre-test. They included the same number of questions covering the four macro skills, grammar, and vocabulary. AI was used to generate vocabulary and grammar exercises. Each skill assessment involves a task related to the field.

For example, the test after the first unit (first methodology) involved a reading task to gauge understanding of a job announcement, a listening task which necessitated understanding a phone conversation, a writing task to create a CV, and a speaking task involving participating in a mock job interview. The content and tasks varied according to the unit and topic. Examples of these tasks can be seen in Appendix 1. For the qualitative components, the instructor collected field notes on the challenges students faced during implementation and, at the end of the intervention, participants completed an open-ended survey by answering five questions about their insights into learning ESP at the A2 level. (See Appendix 2.)

For the data analysis, after conducting the tests, the researcher and another teacher graded each test using the pre-established point scale for each question and the rubric for writing and speaking. The results were recorded in an Excel spreadsheet and analyzed by an expert using R and SPSS v24 statistical software. An open coding technique was employed for the qualitative analysis of the field notes and

open-ended survey responses, with the responses being appropriately categorized to comply with the instrument objectives.

Table 1 displays the treatment topics and needs identified as priorities during the needs analysis and addressed during the pedagogical intervention.


Table 1: Tasks and topics addressed during the treatment

Time	Methodology	Topics	ESP communicative tasks
Weeks 1 to 5	Task-based learning	<ul style="list-style-type: none"> • Jobs in agroindustry • Agroindustry workers 	Understanding field-related texts Understanding online news and reports (announcements) Writing a CV Writing descriptions Writing enquiring emails Phone calls to set up appointments Understanding professional conversations Job interviews Follow-up emails
Weeks 6 to 10	Flipped learning	<ul style="list-style-type: none"> • Agroindustrial processes • Raw materials and value-added products. • Food fairs 	Online searching Understanding field-related texts Understanding online news and reports Organizing a food fair Describing processes and products Pitching a product Sharing food culture
Weeks 11 - 15	Social and emotional learning	Agroindustry economies and career opportunities	Understanding graphs and charts (percentages) Understanding professional conversations Describing processes and products Reading online news and reports (spoken and written) Writing proposals Writing career plans
Weeks 16 - 20	Gamification	Agroindustry 4.0 Agroindustrial machinery	Understanding orders and instructions Understanding professional conversations Describing machinery Managing specialized vocabulary

Note: These tasks and topics were identified through a needs analysis process. A few tasks were added to complete the sequence and achieve the goal.

In order to apply each methodology, various activities were carried out. In line with Basturkmen (2010), Hutchinson and Waters (1987), and Dudley-Evans and St John (1998), activities were carefully broken down to prevent overwhelming students at basic levels. Since TBL follows a cycle, activities such as discussions, vocabulary-building, task instructions, and modeling were essential in the first stage. Then, tasks were designed as group or peer work. Finally, content and language feedback were provided along with exercises for homework practice. For flipped learning, videos, readings, and vocabulary practice were assigned for working at home, while class activities included role-plays, information transfer,

planning, and organizing. During SEL, activities such as reflection journals, a strengths tree, active listening circles, and class discussions were conducted. Lastly, gamification involved earning points through game-based activities and receiving instant feedback to reduce anxiety and create a safe environment for learning. Figure 1 illustrates the process of applying active methodologies to address ESP competencies.

Figure 1: The interaction between active methodologies and professional competencies

All methodologies were supported by ICT in the form of the Moodle platform, which included activities such as a collaborative dictionary that was used to build technical vocabulary. Videos were uploaded and the ED-puzzle platform was utilized to personalize videos and create interactive lessons. Google Forms were used to assess students' understanding of texts they had read, and the Padlet platform facilitated discussions and reflections. Additionally, the participants also used Google Meet, Zoom, and Microsoft Teams to record their practice performances in job interviews, pitching products, and other activities. ICT now represents a vital complement to education, especially for English lessons. Examples of the activities and materials used are shown in Appendix 1.

3.2 Participants

The participants comprised 43 students who were enrolled in the A2 level of English of the agroindustry major. Neither group was assigned randomly; instead, they had already been formed and assigned to the instructor for the semester. Therefore, participants exhibited unique but comparable characteristics. After the placement test, the levels of English indicated A1, A2, and B1 students, with the latter only being in the control group. Table 2 provides the demographic data of participants.

Table 2: Demographic data of the participants

	Sex		Age			Level of English		
	Male	Female	18 and under	19-20	21 and older	A1+	A2	B1
Number	20	23	25	11	7	13	24	6
Percentage	46.51	53.49	58.14	25.58	16.28	30.23	55.81	13.95

4. Results and discussion

To answer the first research question, the pre-test and post-test scores of the two groups were compared in terms of skills. Each skill symbolizes a series of communicative tasks that were deemed to be priorities in the agroindustry's professional field. Table 3 presents the normality test data for the experimental group ($n = 23$) and the control group ($n = 19$), for each skill, showing the pre-test and post-test mean scores, thereby facilitating their comparison and discussion.

Table 3: Normality tests of the experimental and control groups

Group	Skill	Method	Shapiro_p	Statistis	Df	p_value	Mean_Pre	Mean_Post	Mean_Diff
Exp.	Listening	t-test	0.112	-8.387	22	2.67E-08	0.43	3.49	3.06
Exp.	Reading	t-test	0.082	-10.297	22	7.07E-10	2.30	5.78	3.48
Exp.	Speaking	t-test	0.095	-16.398	22	8.07E-14	1.96	6.43	4.48
Exp.	Writing	t-test	0.142	-8.998	22	7.95E-09	2.00	6.00	4.00
Exp.	Vocab	t-test	0.927	-11.141	22	1.63E-10	3.13	7.79	4.66
Exp.	Grammar	t-test	0.272	-4.443	22	0.000205	3.17	5.09	1.91
							2.17	4.69	2.34
Cont.	Listening	t-test	0.064	-0.37	18	0.716447	3.37	3.53	0.16
Cont.	Reading	t-test	0.547	-2.00	18	0.060618	3.63	4.47	0.84
Cont.	Speaking	Wilcoxon	0.029	6.00		0.016708	4.05	4.84	0.79
Cont.	Writing	t-test	0.082	-6.91	18	0.000002	2.26	4.79	2.53
Cont.	Vocab	t-test	0.373	-4.22	18	0.000517	3.79	5.61	1.82
Cont.	Grammar	t-test	0.136	-2.55	18	0.020160	3.42	4.63	1.21
							3.42	4.64	1.22

The experimental group demonstrated statistically significant improvements in all skills, which were analyzed using a dependent t-test for related samples. Listening comprehension ($t(22) = -8.39$, $p < .001$), reading comprehension ($t(22) = -10.30$, $p < .001$), oral production ($t(22) = -16.40$, $p < .001$), written production ($t(22) = -8.99$, $p < .001$), vocabulary ($t(22) = -11.14$, $p < .001$), and grammar ($t(22) = -4.44$, $p < .001$) all showed marked improvements. In particular, the three skills that developed the most were vocabulary ($M = 4.66$), oral production ($M = 4.48$), and written production ($M = 4.00$).

Additionally, the one-way ANOVA analysis of mean differences in the post-test showed significant variability among skills ($F(5, 132) = 7.11$, $p < .001$), indicating that the improvement was not homogeneous. This could be due to the implementation of different methodologies and activities that cater to learners' differences, such as their learning styles, preferences, and areas of strong language proficiency, which are appropriately implemented in mixed-ability classes (Lightbown & Spada, 2021; Telf Barcelona, 2025).

Both tests show that the intervention was highly effective across all skills, supported by strong evidence. The T-values are high, and the p-values are below .001. Vocabulary and productive skills (spoken and written) showed the greatest improvements, likely due to active methods that focus on student-centered activities. These reduce the study load (El-Thalji, 2025) and are effective in developing oral fluency, as also noted by Zhang et al. (2023). The gains in speaking

and writing also reflect a broader shift in ESP, firstly toward a technology-rich environment in which learners practice and receive feedback through digital platforms and, secondly, toward a focus on soft skills alongside hard skills, both of which are necessary in real professional contexts (Hashim et.al., 2025). The results also suggest that grammar and receptive skills may need additional support, probably because active approaches tend to emphasize critical thinking over explicit grammar instruction during methods such as TBL and gamification. In line with this, Mulyadi et al. (2021) also noted that TBL did not lead to significant improvements in listening skills, highlighting the need for more explicit instruction and comprehensible input (Lightbown & Spada, 2021) for basic language learners to understand content effectively.

The noted improvement in each skill reflected the students' proficiency in using the English language to perform a professional task. Therefore, a positive contribution to the development of professional skills was achieved, as required by industry stakeholders (Akash & Suganya, 2024). These tasks were also found to be useful for agribusiness and agriculture (Akash & Suganya, 2024). Thus, it was not one of the ESP courses that fail to meet industry requirements, as evidenced by Petraki and Khat (2022) and Akash and Suganya (2024); instead, it contributed to bridging the academia-workplace gap that remains evident in higher education (Alam et al., 2024).

Furthermore, in the control group analysis, participants also demonstrated statistically significant differences in several skills: written production ($t(18) = -6.91, p < .001$), vocabulary ($t(18) = -4.22, p < .001$), grammar ($t(18) = -2.55, p = .020$), and oral production (Wilcoxon, $p = .017$). However, the results of the listening comprehension ($p = .716$) and reading comprehension ($p = .061$) exhibited no statistically significant differences. The one-way ANOVA test was conducted for the control group scores, which demonstrated statistically significant differences among skills ($F(5, 108) = 4.31, p=0.0013$); however, these differences were lower than those in the experimental group.

Similar to the experimental group, the control group experienced changes in vocabulary and productive skills (written and oral production). However, the increase was notably smaller than that of the experimental group. Additionally, the control group did undergo a significant change in grammar as a result of the grammar translation method (Babayev, 2023), which, however, contributed to better scores in writing. The oral production, which also showed an increase, evidenced a non-normal distribution, suggesting that the B1 students in this group were likely the ones who scored higher. This group did not show significant differences in listening comprehension ($M = 0.16$) or reading comprehension ($M = 0.84$), indicating that the grammar translation method was not effective for input decoding, especially in listening, where the difference between the pre- and post-tests was minimal.

In comparing the overall mean scores of the pre- and post-tests for both groups, it can be seen that the post-test mean score for the control group (4.64) was nearly the same as that of the experimental group (4.69). However, when comparing the

gains, it is clear that the improvement from pre- to post-test in the control group was minimal, at 1.22. Notably, the control group started with an advantage, as shown by the pre-test mean score of 3.42. Therefore, when comparing the gains of both groups, the experimental group outperformed the control group with significant differences across all skills, demonstrating improved performance in addressing the agroindustry's communicative and professional skills as a result of the intervention with active methodologies.

Interestingly, both groups showed improvement in terms of vocabulary and productive skills (despite their differences, as mentioned above), though participants still struggled with receptive skills when completing tasks. This suggests that vocabulary is easier and key for beginners to learn in the industry field, as suggested by Amna and Idriani (2019). In both groups, the improvement in writing and speaking may be attributed to practice, rehearsal (Lightbown & Spada, 2021), short, familiar, and simple tasks (Council of Europe, 2020), a technology-enhanced environment (Mulyadi et al., 2021), and the tutor's support. This was offered to both groups, independently of the methodology used, and according to Li and Yang (2023) it increases learners' cognitive and behavioral improvement.

On the other hand, receptive skills require systematic exposure to comprehensible input, explicit instruction in comprehension strategies, and consistent practice, which may have been less emphasized in the intervention (Aulestia-Vallejo & Cuenca-Fernández, 2018).

Table 4 presents a comparison of the effects of each methodology on each skill (F and p-values), indicating the variance ratio and statistical significance, respectively.

Table 4: Comparison of methodologies and skills

Skill	F	p (Sig.)	Significant?	Best Performing Methodology	Worst Performing Methodology
Reading Comprehension	1.588	0.198	No	SEL	TBL
Oral comprehension	11.716	<0.0001	Yes	SEL	TBL
Written production	3.387	0.022	Yes	SEL	Flipped
Oral production	2.71	0.050	Marginal	SEL	Gamification
Vocabulary range	7.116	<0.0001	Yes	Gamification	Flipped
Grammatical accuracy	2.698	0.051	Marginal	Gamification	Flipped

The methodologies applied in the experimental group showed that social and emotional learning was consistently effective for all macro skills, while gamification outperformed in the subskills, showing statistically significant differences. In contrast, flipped learning and task-based learning had the least

impact on language skills and the development of specific professional tasks, although the differences remained significant.

Results show that social and emotional learning and gamification encouraged skill development among basic-language users. Both approaches are recognized for creating a safe environment, fostering the balance of soft and hard skills that the industry values (Kumar & Rewari, 2022), and promoting a calming atmosphere that lowers the effect filter, thereby supporting natural language learning, as highlighted by Pentón (2020).

Meanwhile, TBL provided the essential content, skill awareness, and clear communicative goals participants needed initially (Trujeque-Moreno et al., 2021), while flipped learning boosted commitment, engagement, and self-paced learning, as shown by Li and Wang (2023). These are vital for beginners since they have more time for individual learning (Lightbown & Spada, 2021). Collectively, all of the methods worked together, combined with ICT support, in contributing to the significant differences between the pre- and post-test scores.

Regarding the challenges, the instructor's field notes indicate that participants experienced cognitive overload and gaps in understanding, especially at the beginning, when TBL was used, and during listening tasks. This aligns with Mulyadi et al.'s (2021) findings, which noted that the use of authentic materials—which are often linguistically demanding—and a lack of sufficient grammar support caused students to rely on L1 and repetition to complete tasks.

Additionally, there was limited spontaneous interaction due to the professional environment that was meant to be fostered; as a result, social skills could be affected since the topics were not those usually used in social settings (Hashim et al., 2025). Also, technology exposed existing inequalities, such as limited access for those in rural areas, equipment disparity, and a lack of digital skills. Finally, the instructor found the intervention highly demanding and time-consuming (Trujeque-Moreno et al., 2021); the content professors' support was not always available when needed, and students at that level are not sufficiently knowledgeable to fully comprehend the agroindustry content.

To address the second research question, Table 5 displays a comparison of methodologies and proficiency levels in the experimental group, including participants' average scores as well as the F values and p-values (sig.) from the statistical analysis. The tendency column indicates which proficiency level tends to perform better with a specific methodology.

Table 5: Comparison among methodologies and proficiency levels in the experimental group

Methodology	Mean A1+	Mean A2	F	p (sig.)	Significant difference	Tendency
Flipped learning	27.1	32.08	3.21	0.088	No	A2 > A1 + (moderate)
Socio-emotional learning	31.8	36.62	3.235	0.086	No	A2 > A1+ (moderate)
Gamification	36.2	38.69	0.411	0.528	No	A2 > A1+ (Mild)
Task-based learning	29.6	31.08	0.206	0.655	No	A2 > A1+ (Very mild)

The table shows no statistically significant differences among methodologies and proficiency levels ($p > .05$). Flipped and social and emotional learning displayed a moderate tendency. In contrast, gamification and task-based learning showed mild and very mild tendencies, respectively.

This indicates that the differences decreased when active methodologies were applied at lower levels. Both groups, A1 and A2, received equal treatment; the same material was provided, and they performed identical communicative tasks, ensuring they aligned with the short, simple, and familiar features outlined by the CEFR (Council of Europe, 2020). All participants received scaffolding and personalized processes and products, such as models, visual aids, vocabulary pre-teaching, and tutoring support when needed—techniques that help elementary learners to better acquire knowledge (Aulestia-Vallejo & Cuenca-Fernández, 2021).

Although some participants experienced frustration and a few even failed the course, especially those who self-regulated and adjusted their learning strategies—managed to develop sufficient skills to pass. The activities, tools, and technological resources related to each methodology were crucial for completing specific tasks, along with the academic and emotional support from the instructor and peers as key strategies (Li & Yang, 2023).

Although Dörnyei (2007) suggests maintaining consistency between the control and experimental groups, this is not always feasible in intact groups. According to Lightbown and Spada (2021), learners' characteristics, along with methodology, materials, and teachers' expertise, must work seamlessly together to ensure English learners' success. Dörnyei and Ushioda (2021) also note that participants' differing characteristics impact language learning, especially at lower levels, when learners have not yet gained sufficient L2 knowledge or learning strategies, which can hinder progress due to the lack of automatic routines and skills that proficient students typically have.

Furthermore, learners' internal traits, such as emotional and motivational levels, significantly influence their experience when learning a foreign language (Pentón, 2020). Even though such characteristics were not measured prior to the

intervention, they were recorded in the teacher's field notes and are discussed below, along with the implications of the demographic factors.

Some of the students in this study came from rural areas, with limited prior exposure to English but with experience in agro-processing. In contrast, others came from urban areas and had no prior knowledge of agro-processing but demonstrated higher levels of language proficiency. This highlighted, on one hand, the disparity in English instruction and technological skills between rural students and those who had received private education in urban settings (Barragán-Camacho et al., 2023) and, on the other hand, the advantages of rural students over their peers in terms of tacit knowledge, farm skills, and contextual know-how (McNamee et al., 2025). Consequently, this made the mixed-ability collaborative work more equitable and helped address any feelings of inferiority caused by limited language proficiency, as evidenced by Brzoza (2020).

Age and gender were identified as characteristics that influenced teaching at lower levels. First, the participants' ages indicated they were mostly young, having recently finished high school. This is important because, in Ecuador, the university entrance process limits their career choices, leading many to select majors they had not initially intended (Erazo-Guerra & Rosero-Morales, 2021; El Comercio, 2019). As a result, frustration and disinterest in their majors manifested and were addressed during the SEL practices.

Second, there were more female students than male students, which was unusual since the agrifood system, industry, and engineering are usually male-dominated, with conditions for women being "irregular, informal, part-time, low-skilled, or labour-intensive" (Food and Agriculture Organization [FAO], 2023, para. 3). However, data from this study suggest that the presence of women in these fields is increasing, with more educated females ready to take on better roles and improved conditions. During the intervention, mixed-gender groups were formed, and SEL practices more formally promoted gender equality, in line with the findings from Pentón (2020).

Regarding the third research question, a qualitative survey was conducted to gather participants' insights on the implementation of the ESP course. Four aspects were explored, following Creswell and Poth's (2018) recommendation for topic design prior to coding: (1) Positive affordances and motivational drivers; (2) Difficulties and disengagement triggers; (3) Pedagogical preferences and perceived effectiveness; and (4) Overall satisfaction and program-level endorsement. The results are presented in Table 6, which organizes the responses from the open-ended survey.

Table 6: Categorization of participants' open-ended survey responses

Constructs	Subcategories	Percentage	Example
Positive affordances & motivational drivers	Relevance of content to career	59%	Perceived short- and long-term value and professional applicability
	Methodology and approach	14%	Learners' comparative evaluation of four instructional paradigms.
	General language development	27%	Language skills development
Difficulties and disengagement triggers	Difficulties in developing skills	13%	Challenges in developing tasks, applying new vocabulary
	Content Understanding/Application	39%	Confusion, demanding tasks
	Personal and contextual factors	13%	Lack of previous knowledge, difficulties in accessing online information
Pedagogical preferences and perceived effectiveness	Neutral or absence of negative aspects	35%	
	Task-based learning (TBL)	22 %	Presentations, work in real environments
	Flipped learning	30 %	Individual learning at home and class discussion
	Social & emotional learning (SEL)	39 %	Creating awareness, goal setting, and future overview
Global satisfaction and program-level endorsement	Gamification	9 %	Game-based activities
	Positive perception of increased learning	69.5%	Competitiveness
	Mixed or ambiguous perception	21.7%	Positive effects and recommendations to continue with the program
	Negative perception	8.7%	Partial satisfaction
			Negative experience and no recommendation for continuity

The participants' feedback on the intervention was mostly positive; they highlighted active methodologies, citing their activities and tools as important factors in their satisfaction. They mentioned that this approach helped them

expand their technical vocabulary, which is a requirement in ESP courses (Amna & Idriani, 2019) and consistent with the quantitative results. Furthermore, they asserted that they had gained a better understanding of agroindustry, and envisioned future international job opportunities, as promoted by UNESCO (2025). Some of their comments included: "I liked it a lot because it will help us throughout our careers, and we are already acquiring knowledge and activities related to our major."

They also said it helped develop their language skills: "Learn more vocabulary," "learn to write descriptions," and "being able to express myself in a better way." These comments are consistent with the numerical results, which show the participants' improvement in vocabulary and oral and written production. As can be noted, the ESP inclusion from the beginning of their majors can equip students to face the challenges and increase their professional readiness, which is expected from higher education and in industrial environments.

Negative feedback primarily focused on the difficulties of speaking fluently when using new technical terms to complete tasks, such as "Not being able to pronounce the processes in English very well." Although the most significant improvement was in vocabulary, participants nevertheless struggled to recall some words during tasks. This is because the technical terms were new and not commonly used. Comments regarding content stated: "Lack of previous knowledge," "The definitions of this field in English are very long and something new for us," "A bit confusing." These comments are not surprising but align with the findings of Lightbown and Spada (2021), who emphasize that prior content knowledge aids comprehension.

Since the students in this study were beginning their major, their content knowledge was limited, which is likely another reason why receptive skills were the least favored in both groups during the intervention. However, this contradicts the findings of Quinonez-Beltrán et al. (2023), who used active strategies to improve reading comprehension with positive results, but only in GI. Finally, participants noted that "suddenly changing the way of working from what was already established" was a disadvantage, as they believed that the particularities of the different approaches could confuse them and hinder the development of routines that would be beneficial for beginners (Lightbown & Spada, 2021).

According to the results, all of the methods used were perceived as being meaningful to the participants. Rather than recommending only one approach, students emphasized the importance of active learning and valued experiences such as thematic fairs, presentations, games, and reflections. Their explanations included the following: "The methodology of reflections and creating awareness of how to do things better for the group's good, we learned to be more relaxed," "As a group, we had better discussions about goals and future jobs and generated ideas on how to grow professionally," "Work at home first and then in class; once I have learned on my own, I can learn more by discussing it with classmates," and "The methodology ... included a product fair. My classmates and I felt we were

in an international environment and said we wanted a job like this." These comments suggest that active participation contributes to improved learning outcomes in ESP settings, regardless of proficiency level (Council of Europe, 2020). Furthermore, the students highlighted the importance of lessons incorporating SEL principles in creating an environment that helps overcome cognitive load (Pentón, 2020) and noted that these activities require more practice, preparation, and dedication, consistent with the needs of beginners.

In line with Teba and Mensah (2023), who stated that SEL principles improve ESP learning, over half of the participants believed they learned more English through the program than with the traditional approach (GI) and recommended its continuation, perceiving English as being vital in such technical fields as agroindustry. Other participants' comments included, "Yes, I learned a lot, but we need more practice," and "No. Too much pressure learning another subject, having to learn the tenses perfectly.", Despite certain challenges, the responses indicated that, on the whole, the students found the course motivating, helpful, and practical. Moreover, their responses demonstrated awareness of the importance of early English mastery in improving academic and career opportunities.

5. Conclusion

The success of ESP programs relies on ongoing needs analysis, wherein stakeholder participation constitutes a key source of industry requirements, enabling the customization of programs to meet real-world demands. Motivation increases when content aligns with students' future career needs because of the perceived value and satisfaction related to job readiness. Learners with limited English skills can still benefit from a comprehensive ESP program that targets professional skills alongside language basics, rather than focusing solely on isolated grammar, vocabulary, or affective factors.

However, it is crucial to include structured support such as simplified input, gradual vocabulary introduction, visual aids, and emotional encouragement as a key part of active teaching methods that effectively meet the needs of basic language users. Thus, this provides meaningful ways in which to bridge the gap between general English and technical communication requirements without neglecting the fundamental grammar structures or essential vocabulary needed in professional and social settings from the early stages of language learning.

Furthermore, it is important to note that technology plays a vital role in supporting active learning methodologies by adjusting task difficulty, creating personalized learning environments, and providing learning support. Lastly, teacher training is essential because the challenge of delivering a course based on professional skills is significant. Therefore, collaboration with content instructors is necessary, as they can provide materials, strategies, and feedback on task performance, helping learners to understand the connection between English and their major as well as to appreciate the usefulness of the tasks they undertake and the skills they acquire.

Regarding its limitations, this study focuses on a narrow angle within the agroindustry field, using small, intact groups of participants. Therefore, the results may be sample-biased and might not accurately represent the needs of a larger population. Thus, future researchers are recommended to conduct the study with a larger sample or to test the program in a longitudinal study. Additionally, learners' characteristics such as motivation, levels of self-regulation, prior knowledge of English, and experience in agroindustry could have influenced the results and may not fully reflect the effects of the methodologies tested. Therefore, it may be necessary to measure and account for these variables in future research.

6. Future research directions

Based on the needs analysis and the results of tasks performed at the A2 level, researchers could develop a comprehensive program through which to teach ESP in the agroindustry major. Starting with basic tasks at the A1 level, the program should progress to more complex tasks at the B1 level, such as reading research articles or writing professional machinery descriptions. These more advanced tasks are beyond the scope of this research but could be implemented at the B1 level and higher. Additionally, the agroindustry genre and corpora can be thoroughly defined through in-depth research. Furthermore, exploring the integration of soft skills to complement hard skills could be a valuable approach.

These findings can also contribute to data-driven methods and guide research in other fields related to food production, as they offer transferable insights into food science and technology, food safety, expert management, and rural development. Lastly, further investigation into the professional development of ESP instructors, including training in multimodal and visual literacy, digital and mobile learning, could deepen understanding of computer-mediated communication, a current trend in ESP.

7. References

Akash, R., & Suganya, V. (2024). Bridging the gap between industry needs and student skills for quality education through SDGs: An industry-academia collaboration in curriculum development. *Journal of Lifestyle and SDGs Review*, 4(1), e03616. <https://doi.org/10.47172/2965-730x.sdgsv4.n04.pe03616>

Alam, M. J., Reza, S. M. A., Ogawa, K., & Ahsan, A. H. M. (2024). Sustainable employment for vocational education and training graduates: The case of future skills matching in Bangladesh. *International Journal of Training Research*, 22(3), 266-288. <https://doi.org/10.1080/14480220.2024.2308224>

Amna, S., & Idriani, S. (2019). A Need Analysis Approach In Developing ESP Module Based On Interactive Multimedia For the Academy of Industrial Technology Padang. *ICLLE 2019*. Padang: European Union Digital Library. <https://doi.org/10.4108/eai.19-7-2019.2289528>

Aulestia-Vallejo, L. E., & Cuenca-Fernández, M. (2021). ESP (English for specific purposes) vocabulary to improve reading at an A1.2/ A2.1 English level. *Kronos – The Language Teaching Journal*, 2(1), 8–23. <https://doi.org/10.29166/kronos.v2i1.1764>

Babayev, J. (2023). Characteristics of grammar-translation method. In A. Muller (Ed.), *Proceedings of the 49th IV International Scientific Conference: Philological Sciences* (pp.59-62). Nakhchivan State University.

https://www.researchgate.net/publication/370712031_Characteristics_of_grammar-translation_method

Baby, K. T., & Sabtan, Y. (2022). The relevance of flipped classrooms for ESP courses in the post-COVID-19 scenario. *Hong Kong Journal of Social Sciences*, (60), 1-12. <https://doi.org/10.55463/hkjss.issn.1021-3619.60.39>

Barragán-Camacho, M. J., Campuzano-Díaz, J. M., Marriott-Toledo, H. M., Yambay de Armijos, K. A., Salvador-Cisneros, K. A., & Vaca-Cárdenas, M. E. (2023). The tapestry of EFL teachers in Ecuador. In S. J. Newman, S. T. Gibson, & D. Cajas (Eds.), *English language education in Ecuador: Assessing opportunities for teaching and learning in a developing nation* (pp. 23-40). USFQ Press. <https://doi.org/10.18272/USFQPRESS.m70>

Basturkmen, H. (2010). *Developing Courses in English for Specific Purposes*. Palgrave Macmillan. https://doi.org/10.1057/9780230290518_2

Brzoza, B. (2020). Different proficiency, same class: Tackling language instruction in heterogeneous ESP courses in vocational schools. *MEXTESOL Journal*, 44(1), 1-4. https://mextesol.penamiller.com/static/index2075.html?page=journal&id_artic_le=17811

Casel.org. (n.d.). *Our history*. <https://casel.org/about-us/our-history/>

Consejo de Educación Superior. (2021, March 21). *Gaceta Oficial CES*. http://gaceta.ces.gob.ec/resultados.html?id_documento=234533

Council of Europe. (2020). *Common European Framework of Reference for languages: learning, teaching, assessment companion volume*. Council of Europe. <https://www.coe.int/en/web/common-european-framework-reference-languages/cefr-companion-volume-and-its-language-versions>

Creswell, J. W., & Poth, C. N. (2017). *Qualitative Inquiry and Research Design: Choosing Among Five Approaches*. SAGE Publications. https://pubhtml5.com/enuk/cykh/Creswell_and_Poth%2C_2018%2C_Qualitative_Inquiry_4th/

Daulay, E. (2019). The Historical of Growth English for Specific Purpose. *Vision Journal*, 15(2), 58-71. <https://jurnaltarbiyah.uinsu.ac.id/index.php/vision/article/view/624/530>

Dörnyei, Z. (2007). *Research Methods in Applied Linguistics: Quantitative, Qualitative, and Mixed Methodologies*. Oxford University Press. <https://global.oup.com/academic/product/research-methods-in-applied-linguistics-9780194422581?lang=en&cc=gb>

Dörnyei, Z., & Ushioda, E. (2021). *Teaching and researching motivation* (3rd ed.). Routledge/Taylor & Francis Group. <https://doi.org/10.4324/9781351006743>

Dudley-Evans, T., & St. John, M. J. (1998). *Developments in English for Specific Purposes: A Multi-Disciplinary Approach*. Cambridge University Press. <https://doi.org/https://acortar.link/9NPAu5>

EF Education First. (n.d.). *Ecuador | EF English Proficiency Index*. <https://www.ef.com.ec/epi/regions/latin-america/ecuador/>

El Comercio (2019, September 30). *La carrera no les convence, pero aceptan por el cupo [They (students) are not convinced by the degree program, but they accept it because of the quota]*. El Comercio. <https://www.elcomercio.com/sociedad/estudiantes-carrera-universitaria-opciones-cupo.html>

El-Thalji, I. (2025). Boosting active learning through a gamified flipped classroom: A retrospective case study in higher engineering education. *Education Sciences*, 15(4), 430. <https://doi.org/10.3390/educsci15040430>

Erasmus, P. (2023). *Curso: lenguas para fines específicos TEOC PRO*. [Course: Languages for Specific Purposes TEOC PRO] [PowerPoint slides]. <https://moodle.lsp-teoc-pro.de/login/index.php>

Erazo Guerra, X. F., & Rosero Morales, E. del R. (2021). Orientación vocacional y su influencia en la deserción universitaria [Career guidance and its influence on

university dropout rates]. *Horizontes. Revista de Investigación en Ciencias de la Educación*, 5(18), 591–606. <https://doi.org/10.33996/revistahorizontes.v5i18.198>

Food and Agriculture Organization. (2023, April 13). *Women's equality in agrifood systems could boost the global economy by \$1 trillion, reduce food insecurity by 45 million – new FAO report*. <https://www.fao.org/newsroom/detail/women-s-equality-in-agrifood-systems-could-boost-the-global-economy-by-1-trillion-reduce-food-insecurity-by-45-million-new-fao-report>

Hashim, H. U., Saragih Sumbayak, E., Saiful Azam, N., Mohd Sukri, H. I., Che Ismail, N. A., & Mohd Sobri Paridaluddin, N. F. (2025). Soft Skills Development through Task-Based Language Learning: Insights from Higher Education in the Malaysian Context. *International Journal of Learning, Teaching and Educational Research*, 24(4), 84–102. <https://doi.org/10.26803/ijlter.24.4.24>

Hutchinson, T., & Waters, A. (1987). *Needs analysis*. In *English for Specific Purposes*. Cambridge University Press. <https://doi.org/doi:10.1017/CBO9780511733031.010>

Idriani, S., & Amna, S. (2019). Designing a learning media of English for specific purposes based on interactive multimedia (Macromedia Flash 0.8) for agro-industry students. *Jurnal Arbitrer*, 6(2), 137–146. <https://doi.org/10.25077/ar.6.2.137-146.2019>

Johns, A. (2013). The History of English for Specific Purposes Research. In B. Paltridge & S. Starfield (Eds.), *The Handbook of English for Specific Purposes* (pp. 5–30). John Wiley and Sons, Ltd., Publication. <https://doi.org/10.1002/9781118339855.ch1>

Kumar, V., & Rewari, M. (2022). A responsible approach to higher education curriculum design. *International Journal of Educational Reform*, 31(4), 422–441. <https://doi.org/10.1177/10567879221110509>

Li, Z., & Wang, Y. (2023). Adopting online flipped teaching to improve learner engagement in an English for specific purposes (ESP) course in China: a mixed-methods study. *Journal of China Computer-Assisted Language Learning*, 1(1), 1–17. <https://doi.org/10.1515/jccall-2023-0001>

Lightbown, P. M., & Spada, N. (2021). *How languages are learned* (5th ed.). Oxford University Press.

Lin, T., & Lei, J. (2021). English-medium instruction and content learning in higher education: Effects of medium of instruction, English proficiency, and academic ability. *SAGE Open*, 11(4), 21582440211061533. <https://doi.org/10.1177/21582440211061533>

McNamee, T. C., López, A. M., & Droogsma Musoba, A. M. (2023). "Because I'm from a rural background": An examination of rural students in higher education through a critical, non-deficit framework. *The journal of higher Education*, 37(3), 1–31. <https://doi.org/10.1080/00221546.2025.2455333>

Ministerio de Educación del Ecuador. (2016). *El perfil del bachiller ecuatoriano: Desde la educación hacia la sociedad*. [The profile of Ecuadorian high school graduates: From education to society]. Ministerio de Educación. <https://educacion.gob.ec/wp-content/uploads/downloads/2016/12/perfil-del-bachiller.pdf>

Mulyadi, D., Wijayatiningsih, T. D., Swaran Singh, C. K., & Prastikawati, E. F. (2021). Effects of Technology Enhanced Task-based Language Teaching on Learners' Listening Comprehension and Speaking Performance. *International Journal of Instruction*, 14(3), 717–736. <https://doi.org/10.29333/iji.2021.14342a>

Murali, V., & Chaitanya, K. (2023). Professional communication skills in English for non-native English-speaking engineering students in the context of Telangana state: Its challenges. *AIP Conference Proceedings*, 2794(1), 020052. <https://doi.org/10.1063/5.0165701>

Necheporuk, Y. (2022). Language for specific purposes (LSP): peculiarities of historic development. *Collection of Scientific Papers of Uman State Pedagogical University*, 2, 191-197. <https://doi.org/10.31499/2307-4906.2.2022.262962>

Olatunji, T. A., & Allinson, I. B. (2024). English language impact on the advancement of robust agro-industry development. *Ilaro Journal of Humanities and Management (IJOHAM)*, 3, 8-11. <https://fpihumanitiesjournal.federalpolyilaro.edu.ng/articles/view/37>

Petraki, E., & Khat, K. (2022). Challenges and constraints in the design of an ESP course in Cambodia: Implications for higher education institutions. *Asia Pacific Journal of Education*, 42(2), 260-275. <https://doi.org/10.1080/02188791.2020.1798738>

Pentón Herrera, L. J. (2020). Social-emotional learning in TESOL: What, why, and how. *Journal of English Learner Education*, 10(1), 1. <https://stars.library.ucf.edu/jele/vol10/iss1/1>

Pro Ecuador. (2025, March 26). *Monitoreo Comercio Exterior Inteligencia de Negocios*. <https://www.proecuador.gob.ec/monitoreo-de-exportaciones-enero-2025>

Quickbytes Education. (2024, December 7). *Quickbytes Education*. <https://quickbytesedu.com/glossary/agriculture/agro-industry/>

Quinonez-Beltrán, A., & Cabrera-Solano, P. (2023). Implementing active reading strategies in virtual settings: High school students' experience during remote learning. *International Journal of Learning, Teaching and Educational Research*, 22(8), 169-182. <https://doi.org/10.26803/ijlter.22.8.10>

Richter, T., Adelsberger, H. H., & Khatami, P. (2016). Bridging the knowledge gap between higher education and demands from the industry. In L. Gómez Chova, A. López Martínez, & I. Candel Torres (Eds.), *Proceedings of the 9th annual International Conference of Education, Research and Innovation* (pp. 2835-2844). IATED. <https://doi.org/10.21125/iceri.2016.0161>

Shahid, S. H., Muhammad, A. K., & Ishtiaq, M. (2023). Historical and Theoretical Perspectives of English for Specific Purposes: An Overview. *Pakistan Languages and Humanities Review*, 7(2), 370-383. [https://doi.org/10.47205/plhr.2023\(7-ii\)32](https://doi.org/10.47205/plhr.2023(7-ii)32)

Stojković, N. (2018). English for specific purposes as a linguistic response to globalization. *Journal of Language and Literature Studies*, 1(1), 7-14. <https://doi.org/10.31902/fll.25.2018.1>

Teba, S. C., Zinsouvi, S. D. C., & Mensah, M. M. (2023). Exploring the use of social and emotional learning (SEL) to enhance oral communication in Beninese ESP teaching-learning process: Case study of Lycée Technique et Professionnel of Porto-Novo (Benin Republic). *International Journal of Innovative Science and Research Technology*, 8(9), 941-947. <https://doi.org/10.5281/zenodo.8379537>

Tërnava-Omani, S., & Brestovci, M. (2024). Readiness and challenges of Prishtina University students for ESP classes. *Journal of Language Teaching and Research*, 15(2), 342-347. <https://doi.org/10.17507/jltr.1502.02>

Telf Barcelona, (2025, July 26). *Strategies for managing mixed-ability classes*: TEFL BCN. TEFL Barcelona - TEFL Spain. <https://teflbarcelona.net/strategies-for-managing-mixed-ability-classes/>

Trujeque-Moreno, E. E., Romero-Fernández, A., Esparragoza-Barragán, A., & Villa-Jaimes, C. J. (2021). Needs analysis in the English for Specific Purposes (ESP) approach: The case of the Benemérita Universidad Autónoma de Puebla. *MEXTESOL Journal*, 45(2). <https://doi.org/10.61871/mj.v45n2-17>

UNESCO. (2025, June 23). *Why does higher education matter?* UNESCO. <https://www.unesco.org/en/higher-education/need-know>

Yanhua, L., & Guangwei, H. (2021). Mapping the field of English for specific purposes (1980-2018): A co-citation analysis. *English for Specific Purposes*, 61(1), 97-116. <https://doi.org/10.1016/j.esp.2020.10.003>

Zhang, X., Dai, S., Ardasheva, Y., & Hong, Y. (2023). Relationships among English language proficiency, self-efficacy, motivation, motivational intensity, and achievement in an ESP/EAP context. *Journal of Psycholinguistic Research*, 52(6), 3019–3038. <https://doi.org/10.1007/s10936-023-10034-9>

Appendix 1

Examples of ESP lessons

Treatment Plan Unit 2

Theme: Food Fairs

Methodology: Flipped Learning

Duration: 5 weeks (3 classes per week: 2 face-to-face, 1 online with asynchronous tasks and ICT support)

ESP Communicative Tasks:

Describing products

Describing processes

Pitching a product

Presenting a process and a product at a fair

GENERAL OBJECTIVE: By the end of the unit, students will be able to present an Agroindustrial product at a fair and explain the production process, raw materials, and how value is added.

Time	Topic	Specific Objectives	Activities	Vocabulary & Grammar	ICT Support	Assessment
Week 6	Value-Added Products	Understand what value-added products are and how they enhance market appeal.	<p>At Home: Research value-added products in agroindustry (e.g., juice from fruit, flour from grains). Submit a list.</p> <p>Class 1: Jigsaw Reading: Processing and Packaging Information transfer and guided questions.</p> <p>At home: Listening to videos about the benefits of some value-added products and creating flashcards</p> <p>Class 2: Speaking</p> <p>Use the flashcards to describe the product's origin, ingredients, and benefits</p> <p>Online: Online game checking for understanding</p>	<p>Vocabulary: Value-added, processing, enhancement, market appeal, packaging.</p> <p>Grammar: Conditional 1 for possible outcomes (e.g., "If the product is processed, it increases in value").</p>	<p>Google Search for examples of value-added products</p> <p>Canva: Poster creation tool</p> <p>Virtual platform: Product summary submission</p>	<p>Group Questionnaire Submission.</p> <p>Research summary.</p> <p>Peer evaluation of product explanations.</p>
Week 7	Agroindustrial Processes and Raw Materials	Describe a product process	<p>At Home: Watch a recorded video on the agroindustrial production process. Take notes and answer guided questions using Forms.</p> <p>Class 1: Speaking: Discuss the production process in groups and create a poster of the process together.</p> <p>At home: Research the process of a product of your interest and make an infographic</p> <p>Class 2: Speaking: Share the process of your product</p> <p>Online: Complete a reading task on raw materials used in agroindustry and submit a reflection.</p>	<p>Vocabulary: Raw materials, production process, supply chain, transformation, by-products, sequence words</p> <p>Grammar: Passive Voice for describing processes (e.g., "The product is made from...").</p>	<p>Video: "How Agroindustries Work" (YouTube)</p> <p>Virtual Classroom: Reading task on raw materials</p> <p>Google Forms: Guided questions submission</p>	<p>Guided question submission</p> <p>Poster creation (peer feedback)</p> <p>Product transformation</p> <p>Product presentation.</p> <p>Infographic Process presentation</p>
Week 8	Fairs and Exhibitions in Agroindustry	Pitching a product for a fair	<p>At Home: Watch videos of agroindustry fairs or exhibitions and take notes on how products are displayed and marketed.</p> <p>Share insights in a forum (Virtual Classroom).</p> <p>In Class: jigsaw reading</p>	<p>Vocabulary: Trade fair, exhibition booth, product display, marketing strategy, sales</p>	<p>YouTube: "How to Present at an Exhibition"</p> <p>Virtual Classroom: Forum discussion of</p>	<p>Participation in forum discussion.</p> <p>Graphic organizer (peer feedback)</p> <p>Exhibition</p>

			about international trade fairs Graphic organizer in groups with the video and reading information At home: Listening to a product pitch and how to display it at a fair In class: Write an outline for a fair exhibition (group work) Online: Make a video pitching your product and	pitch. <i>Grammar:</i> Future Simple for product prediction (e.g., "This product will increase market value").	fair experiences Video: Record a 1-minute elevator pitch (advertisement) for the product	outline (collaborative work) Video pitch submission.
Week 9	Cultural Sharing through Agroindustry Products	Understand cultural influences in products	At Home: Research an agroindustrial product from a different country and its cultural significance. Present findings through an infographic (Canva). In Class: Share the infographic with the class, highlighting cultural aspects of the product. Reading: Food culture: group discussion At home: Research the cultural aspects of the selected product and share it in the forum. Comment on your peers' posts In class: Speaking: Role-play a conversation on a product culture Online:	<i>Vocabulary:</i> Cultural significance, tradition, heritage, local flavors, innovation. <i>Grammar:</i> Relative clauses for explaining product origins (e.g., "This is a product that originates from...").	Canva: Infographic creation tool YouTube: Food and culture; documentaries. Virtual platform: Infographic submission	Infographic evaluation based on creativity and content. Cultural sharing presentation. Peer feedback on Forum contribution
Week 10	Preparing for the Fair: Product Presentation Simulation	Organizing a fair and a product stand	At Home: Finalize the product ad, creating a digital portfolio (PowerPoint Slides). Submit it for peer review. In Class: Present product pitches in pairs, followed by peer feedback and instructor evaluation. Invitations to faculty are delivered Class 2 Test and feedback	<i>Vocabulary:</i> Audience, presentation style, marketing language, promotion. <i>Grammar:</i> Modal verbs for giving advice (e.g., "You should focus on...").	Google Slides: Portfolio creation Zoom Live: product pitch Peer Review: (Google Forms)	Final product Ad evaluation (rubric). Peer feedback on presentations. Digital portfolio (Power point Slides). Test

Appendix 2

Open-ended survey: Insights into the intervention

As part of the educational intervention you participated in, you will answer some questions to help us evaluate how effective teaching English for specific purposes at the A2 level at ESPOCH is.

By answering these questions, you authorize the analysis and publication of the data.

1. What did you like most about learning English focused on your career? Why?
*
2. What did you like least about learning English focused on your career? Why?
*
3. Which methodology did you like best and why? Task-based methodology? The flipped learning methodology (learning at home and doing the exercises in class)? The Social-emotional learning (SEL) activities? Or the game-based methodology (gamification)? *
4. Would you recommend continuing with this program in your degree program? Why or why not?
5. Do you think you learned more English than with the regular program (English for social purposes)? * How?