

Organizing Experiential Learning Activities to Develop Competency in Childhood Development Assessment for Early Childhood Education Students in Vietnam

Tran Thi Thanh Tuyen

Institute of Technical Education, Ho Chi Minh City University of Technology and Education, Vietnam

Duong Thi Kim Oanh*

Ho Chi Minh City University of Technology and Education, Vietnam

Abstract. Assessing children's development plays a crucial role in Early Childhood Education, enabling teachers to identify children's progress across physical, cognitive, language, emotional, social, and aesthetic domains. Assessment enables teachers to design educational plans tailored to each child's needs, create a positive learning environment, and support holistic development. In addition, assessment provides information for educators, schools, and parents to collaborate effectively in fostering children's growth and learning. Despite its importance, the integration of experiential learning activities to develop competency in childhood development assessment for Early Childhood Education students in Vietnam remains underexplored. This study investigated the impact of organizing experiential learning activities to develop competency in childhood development assessment among third-year Early Childhood Education students at Ho Chi Minh City University of Education. We employed a one-group pretest-posttest experimental design involving 87 randomly selected students during the second semester of the 2023–2024 academic year. The methods employed included questionnaire surveys and an analysis of student activity products. The results showed significant improvement among students in competency in childhood development assessment after the intervention. This finding underscores the effectiveness of targeted instructional strategies – particularly experiential learning activities such as observation, problem-solving scenarios, and practical assessments – in enhancing students' evaluative skills. This study provides valuable insights into teacher training reforms in Vietnam, emphasizing the need

*Corresponding author: Duong Thi Kim Oanh, oanhdtk@hcmute.edu.vn

for practice-based pedagogical approaches to better prepare future preschool educators.

Keywords: competency in childhood development assessment; Early Childhood Education students; experiential learning activities; experiential learning

1. Introduction

Improving the quality of preschool education requires teacher training institutions to constantly innovate, meet, and exceed professional standards. The focus of teacher training programs is to equip teachers with knowledge and professional skills in caring for, nurturing, and educating preschool children (Pham & Then, 2021; Phan, 2019). In particular, developing the ability to assess children's development plays an important role. It helps teachers to understand the psychological characteristics, needs, and interests of children, thereby building appropriate teaching plans, pedagogical practices, and internships (Clark & McDowell, 2012; Trinh, 2013). Childhood development assessment is a core skill that helps teachers collect information, analyze children's actual progress, compare it with developmental and learning goals set in the curriculum, and adjust childcare and education plans effectively (Nguyen, 2024).

In response to the current requirements of educational innovation, improving the quality of preschool teacher training not only focuses on theoretical knowledge but also requires strong innovation in teaching methods toward developing learners' capacity. Experiential learning methods need to be deeply integrated into the training program. These methods include observing real situations at preschools, handling situations, working in groups, and conducting teaching practice. Experiential learning methods help students to form and develop practical capacity and better meet career requirements after graduation, contributing to building a team of high-quality preschool teachers and meeting the needs of educational innovation in the current period. Experiential learning in teacher training colleges plays an important role because of the flexibility and sophistication of teachers in organizing experiential learning activities (Bueno et al., 2010; Couse & Recchia, 2015; Heineke et al., 2013; Kolb, 1984; Thorp & Sanchez, 2013). Through this, students form and develop professional competencies, such as better understanding career paths and job opportunities (Hollis & Eren, 2016; John, 2002; Kolb, 2017), problem-solving (McIntyre et al., 2005), critical thinking, interpersonal relationships (McIntyre et al., 2005), life skills (Hesser, 1995), communication skills (Silberman, 2007), and management and leadership skills (Silberman, 2007; Wegner, 1987). In the field of preschool teacher training, experiential learning activities help students develop teaching skills, improve pedagogical skills, and solve practical problems (Bueno et al., 2010; Couse & Recchia, 2015; Heineke et al., 2013; Hnizdilova et al., 2023; Maude et al., 2010).

Although many international studies have proven the role of organizing experiential learning activities for developing Early Childhood Education students' professional competencies (Bueno et al., 2010; Chen & McNamee, 2006;

Couse & Recchia, 2015; Decker et al., 2023; Heineke et al., 2013; Hinzdilova et al., 2023; Mpakirtzis, 2012; Thorp & Sanchez, 2013), no research has been done on organizing experiential learning activities to develop competency in childhood development assessment for Early Childhood students in Vietnam. Most studies propose methods and forms of organizing experiential teaching to develop the professional capacity of students majoring in preschool education (Dang, 2024; Nguyen, 2024; Trinh, 2013). However, there is a lack of empirical studies on how experiential learning activities can be systematically designed and implemented to develop competency in childhood development assessment among Early Childhood Education students.

The objective of this study was to design and organize experiential learning activities to develop competency in childhood development assessment among Early Childhood Education students in Vietnam. The study aimed to propose a model of experiential learning that can be integrated into teacher training programs to enhance students' professional capacity in childhood development assessment. The research question formulated to address the research problem is:

- How can experiential learning activities be organized to develop competency in childhood development assessment among Early Childhood students in Vietnam?

2. Literature Review

2.1 Experiential Learning

Experiential learning is recognized as a process through which learners gain knowledge, skills, and attitudes by engaging directly in meaningful activities and reflecting on their experiences. According to Dewey (1938), experiential learning is "learning through doing" and is the foundation of understanding. In addition, Kolb (1984) conceptualized experiential learning as the transformation of experience into knowledge through a cyclical process of grasping and transforming experience.

Experiential learning goes beyond mere physical engagement, involving both the cognitive and emotional dimensions of the learner. Rogers (1969) stressed the personal involvement of the learner, stating that learning becomes more effective when the individual is emotionally and intellectually invested in the process. The learners are active participants rather than passive recipients. Experiential learning is not confined to the classroom. According to McKeachie (1999), experiential learning is present in a variety of educational contexts, such as community service, internships, research participation, and other real-world engagements that extend beyond formal instruction. These diverse forms of learning allow learners to apply theoretical knowledge in authentic settings, thereby deepening their understanding and fostering transferable competencies.

Bourdeau (2004) and Trinh (2020) further emphasized the transformative aspect of experiential learning, describing it as a process in which learners actively engage with real-life situations, reflect on their actions, and construct new meanings based on their experiences. This process supplies knowledge, skills, attitudes, and values essential for personal and social development. In this study,

experiential learning is viewed as a process involving direct interaction with real-life situations in which learners perform specific actions, experience reality, and then reflect on and analyze what happened to make new experiences. It is a learning method based on personal experience, helping learners develop knowledge, skills, and abilities through application in practice, thereby not only promoting personal development but also contributing positively to the community.

2.2 Characteristics of Experiential Learning and Experiential Learning Model

Experiential learning is the transformation of knowledge based on individual experience. Experiential learning involves active participation through hands-on activities and practical experiences, which foster analysis, reflection, and the transformation of experiences into new learning opportunities. Experiential learning not only focuses on results but also emphasizes the learning process. It is based on the foundation of individuals participating in the learning process. Furthermore, experiential learning is the process of transforming theoretical models into practical experiences and helping learners form and develop adaptive capacity (Kolb, 1984).

There are various experiential learning models, such as Lewin's model (Lewin, 1951), Dewey's model of experiential learning (Dewey, 1938), and Kolb's experiential learning (Kolb, 1984), with each model having its own characteristics. This study employed Kolb's experiential learning model to design experiential learning activities. Kolb's experiential learning model includes four stages: concrete experience, observation and reflection, abstract conceptualization, and active experimentation (Haynes, 2007; UC Davis, 2011).

Stage 1: Concrete experience

In this stage, students are directly involved in practical situations related to child assessment through activities such as role-playing as a teacher in a simulation situation, solving situations that arise during child observation, participating in games, and presenting observation results. During this process, the lecturer plays a general guiding role but creates conditions for students to freely experience, thereby allowing students to express their emotions, exercise critical thinking and adaptability, and respond to specific situations that occur in the preschool environment (Kolb, 1984; UC Davis, 2011).

Stage 2: Observation and reflection

Students are encouraged to share what they observed, felt, and learned after the experience. Group discussions and feedback from peers and lecturers help students review their actions, identify strengths and weaknesses, and compare their actions with existing experiences or knowledge. This stage helps students connect practical experiences with theoretical knowledge, thereby forming a foundation for building the capacity to assess children's development more deeply (Kolb, 1984; UC Davis, 2011).

Stage 3: Abstract conceptualization

Based on experiences and reflections, students will compare, analyze, and generalize by connecting with professional documents, lectures, and criteria for

assessing children's development according to the preschool education program. This helps students to transform specific experiences into abstract, systematic knowledge, thereby consolidating professional knowledge and the ability to assess children's development (Kolb, 1984; UC Davis, 2011).

Stage 4: Active experimentation

In the final stage, students apply the knowledge and skills they have learned to similar or new situations. Activities include developing assessment tools for a child of a given age, dealing with ineffective assessment cases, or practicing assessment of children in preschool settings. Lecturers play a supporting role by encouraging students to share new experiences. Through this, subsequent experiential learning cycles are formed, helping students to increasingly improve their ability to assess children's development in a more solid and flexible way (Kolb, 1984; UC Davis, 2011).

2.3 Experiential Learning Forms to Develop Competency in Childhood Development Assessment for Early Childhood Students in Vietnam

For Early Childhood students, experiential learning activities include many different methods and forms, aiming to develop the ability to observe and evaluate children's development. These diverse experiential learning activities include practice (Decker et al., 2023; LaParo & Siskind, 2022; Niemi, 2002), investigation and research (Zaslow & Martinez-Beck, 2006), attending courses or seminars (Zaslow & Martinez-Beck, 2006), and keeping diaries (Bayat, 2010). Other common approaches at preschool education facilities are internships (Couse & Recchia, 2015; LaParo & Siskind, 2022; Phan, 2019; Recchia et al., 2009; Weng & Cao, 2023), observation (Clark & McDowell, 2012; Fixsen et al., 2005), teaching problem-solving (Hollingsworth & Vandermaas-Peeler, 2017), and participating in games (Tympa et al., 2021). Yet other forms include student presentations (Tympa et al., 2021), discussion and small-group work (Decker et al., 2023), project implementation (Ong et al., 2016; Vicente Sánchez et al., 2019; Zamora-Polo et al., 2019), and pedagogical practice (Chen & McNamee, 2006; Dang, 2024). This study utilized five experiential learning activities to develop competency in childhood development assessment for Early Childhood students in Vietnam, namely: observation, games, problem-solving, teamwork activities, and pedagogical practice/training.

2.4 Childhood Development Assessment

McAfee and Leong (2011) defined *childhood development assessment* as a systematic process of gathering, organizing, and interpreting evidence from multiple sources to understand children's developmental progress. This view emphasizes the cognitive dimension of assessment—moving beyond simple data collection to purposeful analysis for educational decision-making. In addition, Chen and McNamee (2006) emphasized the importance of observing, listening, and collecting real-time evidence in classroom settings and including assessment as a natural and continuous part of the teaching and learning process. This perspective emphasizes formative assessment embedded in everyday interactions with children. In the Vietnamese context, Nguyen (2015) showed that the conceptual framework aligns assessment with the goals of the national Early Childhood Education Program. Assessment is not only a pedagogical process but also a

means of monitoring children's progress in relation to curriculum objectives, ultimately guiding adjustments in care and education strategies. This perspective reinforces the role of assessment as a tool for curriculum implementation and policy alignment.

All three approaches above emphasize the importance of collecting information to understand and support children's development. All three refer to collecting evidence from a variety of sources, ensuring a comprehensive and objective assessment. However, there are certain differences. The definition by McAfee and Leong (2011) focuses on the aspect of organizing and interpreting information to understand children's development. Nguyen (2015) expanded this perspective by emphasizing comparison with the goals of the Early Childhood Education Program to adjust the child's care and education plan. Meanwhile, Chen and McNamee (2006) emphasized the role of listening, observing, and collecting direct evidence from the learning process in the classroom environment. This distinction shows that childhood development assessment is not only a data collection process but also an important tool for teachers to adjust teaching and care methods, ensuring that they are appropriate to the needs and abilities of each child. To sum up, childhood development assessment is the process of using methods and tools to collect assessment information and using the information to adjust the child's education and care plan.

2.5 Competency in Childhood Development Assessment

In teaching according to the competency approach, the competency related to testing and assessing children can imply "*knowledge of different assessment tools on children's learning and development, feedback mechanisms, and data collection systems*"; "*continuous assessments throughout the child's learning process to support the child's individual learning needs*"; and "*competencies in identifying and responding appropriately to children with special needs, such as those related to delays or disabilities*" (UNESCO & SEAMEO, 2018). Furthermore, assessment-related competencies are combined under the scope of knowledge of teaching content, pedagogical practice, and assessment, suggesting the need to synthesize the needs of assessing children's learning and comprehensive development. From the above concepts, the ability to assess children's development can therefore be summarized as follows: The ability to assess children's development is the ability to assess the process and comprehensive development of children, thereby making effective teaching decisions suitable for each preschool child.

2.6 Criteria for Competency in Childhood Development Assessment

The criteria for competency in childhood development assessment among Early Childhood students are determined based on two main approaches: 1) competency framework of preschool teachers in countries around the world and in Vietnam (Ministry of Education and Training, 2018; NAEYC, 2020; Office of Early Childhood Development, 2008; Professional Impact NJ, 2014; UNESCO & SEAMEO, 2018) and 2) child development assessment process (Brodie, 2013; McAfee & Leong, 2011; Peterson & Elam, 2025; Wixson, 2021). The criteria include four aspects.

1. Planning to assess children's development

Planning to assess children's development is an important first step. Planning includes determining the purpose, assessment objectives, objects, time, location, and assessment areas. In this step, students choose assessment tools suitable for the purpose and content of the assessment.

2. Conduct assessment and process and analyze the collected assessment information

Here, students use observation tools, conversations, exercises, product analysis, conversations with parents, situations, and records to collect assessment information. Students analyze the outcomes achieved by children compared to the set goals.

3. Use assessment results

Based on analysis and assessment, students adjust the next teaching plan. Assessment results also help students adjust teaching methods and forms. In addition, assessment results help students to adjust the implementation of the teaching program.

4. Inform children and parents of assessment results

Students use assessment information to help children recognize their strengths and weaknesses. Students listen and learn to understand children. Students share information with parents about their child's assessment results.

2.7 Implementation of Experiential Learning Activities in Teaching the "Assessment in Early Childhood Education" Module

The study identified five types of experiential learning activities, namely: observation, games, problem-solving situations, groupwork, and practice, that could be used to design the content of the seven lessons of the "Assessment in Early Childhood Education" module. The specific contents are presented in Table 1.

Table 1: Design of experiential learning activities

Lesson	Concrete experience	Observation and reflection	Abstract conceptualization	Active experimentation
Observation method	Observe children at kindergarten, record behavior	Discuss in groups the observations and comments	Read documents, build theoretical models	Design observation tools and practice assessing children
Method of using checklists and scales	Analyze the situation of assessing children using an inventory	Present results and comments	Read documents, build theoretical models	Design an inventory to assess children
Exercise method designed by teachers	Solve the situation of designing exercises to assess children's cognition	Discuss in groups how to distinguish between exercises and games	Read documents, build theoretical models	Design two exercises to assess children

Conversation method	Students ask topic-related questions through learning games	Present questions, comment on how to ask questions	Read documents, build theoretical models	Design conversation questions with children
Method of analyzing children's products	Analyze children's drawings after an activity	Present criteria for evaluating children's products	Read documents, build theoretical models	Practice analyzing children's products in kindergarten
Testing methods	Discuss the types of tests to assess preschool children	Present and comment on when to use tests	Read documents, build theoretical models	Design multiple-choice questions to assess children
Performance and portfolio	Plan to assess children through a real project	Discuss the implementation plan in groups	Read documents, build theoretical models	Design a child assessment portfolio

3. Methodology

3.1 Research Design

This study employed a one-group pretest-posttest experimental design to assess the effectiveness of experiential learning activities in enhancing competency in childhood development assessment among third-year Early Childhood students. The intervention was integrated into the teaching of the "Assessment in Early Childhood Education" module and spanned seven lessons, incorporating five experiential learning approaches: observation, games, problem-solving, teamwork, and practicum in kindergartens. These activities were organized based on Kolb's experiential learning model and aligned with students' ongoing pedagogical internships to ensure relevance and practical application.

A combination of both quantitative and qualitative approaches was used to assess the pretest-posttest intervention. For data collection in the pretest phase, questionnaire surveys were used to assess competency levels. In the posttest phase, questionnaire surveys were combined with qualitative analysis of students' activity products—such as observation records, assessment tools, and checklists—to provide insights into students' development and application of assessment competencies. The one-group pretest-posttest design was selected to measure changes in students' competency before and after the intervention. This mixed-methods design was chosen to capture both the measurable outcomes of the intervention and the qualitative depth of students' learning processes, thereby offering a more comprehensive understanding of the impact of experiential learning on professional competency development.

3.2 Sample

The experiment was conducted with a group of third-year students at Ho Chi Minh City University of Education during the second semester of the 2023–2024 academic year. All the students were female. A simple random sampling technique was employed to ensure unbiased selection and enhance the representativeness of the sample. Two classes were randomly selected from the total number of classes at that time. The sample consisted of 87 students who voluntarily participated in the study.

3.3 Research Instrument and Data Collection Method

A structured questionnaire was developed to assess competency in childhood development assessment among Early Childhood Education students. The questionnaire consisted of two main sections. The first section sought details on academic year and student code. The second section aimed to assess student responses to 4 component competencies (factors) and 16 items (variables): (a) planning childhood development assessment (5 items); (b) assessing and analyzing information from childhood development assessment (3 items); (c) applying information from childhood development assessment to design and implement child care and education activities (4 items); and (d) communicating information from childhood development assessment to children and their parents (4 items). The questions were rated on five levels: good, fair, average, weak, and poor.

This study was conducted in two phases. The first phase focused on testing the reliability and validity of the Childhood Development Assessment Competency Scale. Data were collected from 478 Early Childhood Education students across three universities. SPSS 20 software was used to perform statistical analyses, including Cronbach's alpha for internal consistency and exploratory factor analysis to examine construct validity. These analyses ensured that the scale was both reliable and theoretically sound before being applied in the experimental phase. In the second phase, the scale was used to perform an evaluation before and after the experiment. The survey was subsequently distributed via Google Forms.

Based on the Childhood Development Assessment Competency Scale, a rubric was developed for assessing student capacity in childhood development assessment. The rubric included 4 components and 16 indicators which were rated on 5 levels: good, fair, average, weak, and poor. The rubric was used to assess students' activity products during and after the experiment.

3.4 Data Analysis Procedure

The quantitative data were analyzed using SPSS 20 software using both descriptive and inferential statistical methods. Student information, including student code and academic year, was encoded in numeric form to facilitate processing and protect student anonymity. Data on student codes were encoded with unique numbers to identify students in the study without revealing personal information. Data on student academic year were also encoded: 3 for third-year students and 4 for fourth-year students. Student self-assessment survey responses were coded on a 5-point Likert scale, ranging from 1 (*poor*) to 5 (*excellent*). After data capturing, missing values and data entry errors were checked and cleaned to ensure data accuracy. Descriptive statistics, including mean (M) and standard deviation (SD), were employed to summarize students' self-assessments before and after the experiment. To determine whether there were significant differences in students' competencies, a paired samples *t*-test was conducted, comparing pre-experiment and post-experiment scores.

The qualitative data analysis process was carried out using the thematic analysis method based on the framework of Braun and Clarke (2006). The analysis aimed

to clarify the manifestations and levels of competence development in childhood development assessment of Early Childhood Education students through learning activity products. First, students' products (including exercises, observation sheets, personal comments, etc.) were collected, coded, and classified by code to ensure anonymity. Then, the data were entered into an Excel spreadsheet for manual coding. Each meaningful content excerpt was carefully read and assigned initial codes, reflecting students' actions, emotions, or perceptions related to the learning content. Similar codes were grouped and analyzed to form potential themes. These themes were continually reviewed, adjusted, and clearly identified with names and core content and illustrated with typical excerpts from students' products. This process helped to clarify aspects such as students' understanding of assessment methods, the level of application in practice, and the difficulties or advantages in the process of assessing children in preschool.

4. Results

4.1 Research Results for Competency in Childhood Development Assessment among Early Childhood Students before the Pedagogical Experiment

The results of the quantitative research on the competency in childhood development assessment among Early Childhood students before the experiment showed that, in general, the average competency level of the students to assess children's development was quite good ($M = 3.93$). When comparing the two groups before the experiment, the difference between Class 02 ($M = 3.94$) and Class 01 ($M = 3.92$) was insignificant (0.02 points), showing the similarity in competency between the two groups. Among the components of assessment competency, assessment planning competency had the highest average score (3.91, 3.95), showing that the students organized and prepared assessment plans well. Scores for competency in conducting assessments and processing the information obtained were also quite equal between the two groups (3.93, 3.94). However, scores for the competency of using assessment results fluctuated (3.87, 3.95), indicating that some students had difficulty in applying assessment results to adjust educational activities. Furthermore, the competency of sharing assessment results with children and parents was scored high in both groups ($M = 3.94$), indicating that students could communicate information quite well. Based on the results of the previous survey, the competency in assessing children's development often focused on aspects of planning and implementing assessment, while the use and notification of results were often overlooked (Tran & Duong, 2025). This was clearly reflected in the quantitative results. When the competency in using assessment results achieved a low average score, the research results showed that students had difficulty applying assessment results to adjust educational methods as well as to inform parents and children of assessment results. The survey results also showed that students often lacked confidence in reporting assessment results, especially when facing the parents. The quantitative results reinforced this finding, although students still had limitations when communicating with parents despite the relatively high score for assessment reporting.

4.2 Research Results for Competency in Childhood Development Assessment among Early Childhood Students after the Pedagogical Experiment

The research results for the competency in childhood development assessment among Early Childhood students after the experiment showed that the competency components were all rated at a good level. Class 01 had a mean score of 4.47 (SD = 0.6) and Class 02 had a mean score of 4.48 (SD = 0.56). The research results showed a significant improvement in the competency of students to assess Early Childhood development after the experiment, with an average increase of 0.54 to 0.55 points. Specifically, the average score of Class 01 increased from 3.92 to 4.47, while that of Class 02 increased from 3.94 to 4.48. A paired samples *t*-test was performed to determine the significance of this difference. The results showed that all *p* values were < 0.05, with many *p* values < 0.001, proving that the difference between the pretest and posttest was statistically significant. This confirms that the experiment had a positive and significant impact on the development of students' child assessment capacity. In particular, components such as assessment planning, assessment implementation and information processing, use of assessment results, and reporting of assessment results all saw significant improvements.

4.2.1 Competency in planning to assess children's development

For the competency in planning the assessment of Early Childhood development, Class 01 achieved a mean score of 4.49 (SD = 0.60) and Class 02 a mean score of 4.45 (SD = 0.57). This increase shows a clear improvement after the experiment. Analysis of student performance also provided insight into their planning skills. From a qualitative perspective, the assessment plans created by students were clear and specific, with the identification of appropriate assessment objectives for each age and area of children's development, including physical, cognitive, language, social-emotional, and aesthetic domains. Students also paid attention to clearly identifying the objects to be assessed and the implementation time. Assessment objectives were identified specifically and clearly and arranged from easy to difficult. In addition, regarding the use of a variety of assessment methods and tools, such as observation, conversation, and assessment of children's products, results showed that students did not rely on a single method but knew how to combine several methods to obtain an overall view of Early Childhood development. The planning competency for childhood development assessment was analyzed in detail using the following products.

Student activity product analysis results: "Designing checklists and scales." For the lesson "Methods of using checklists and scales", students participated in experiential learning activities such as problem-solving, group discussion, and practice designing inventories. The process of implementing the inventory was carried out in small groups. Each group determined the topic, created assessment objectives for each topic, and built an assessment checklist to determine which assessment method was suitable for each topic objective. After implementation, the groups discussed and commented on the products. The assessment results showed that the inventory identified steps such as determining the topic objective, formulating objectives using measurable action verbs such as "describe" and "compare", based on Bloom's taxonomy, and ensuring that objectives reflected the five key developmental areas: physical, cognitive, language, emotional-social, and

aesthetic domains. The students knew how to select the appropriate assessment methods for each objective.

Student activity product analysis results: “Designing exercises to assess children.” For the lesson “Method of exercises designed by teachers”, each group of students designed two exercises to assess children. During the implementation process, each group selected indicators, analyzed objectives, and designed exercises to assess children. The results of the self-assessment and peer assessment showed that students actively discussed, commented, and asked questions for their group. Students discussed very enthusiastically, in the spirit of learning and agreeing on a common method. The peer assessment scores were very objective and based on specific criteria. The results of the product assessment from the teacher showed that students applied their knowledge of the process of designing exercises to assess children to ensure the objectives and content of the assessment were achieved. The exercises were designed to be very diverse and to be on various difficulty levels.

Student activity product analysis results: “Designing questions for conversation with children.” For the lesson “Conversation method”, each group of students designed 7 to 10 questions to talk to children (students chose their own age and topic). The results of the question design products showed that students could identify the topic, age, and assessment goals and build a system of questions to talk to children. However, some students still had many difficulties when asking questions. First, students did not know how to ask questions in order from easy to difficult. Second, students’ questions did not adhere to the set goals. On the students’ side, there was preparation and implementation of tasks required by the teacher. Students actively participated in the self-assessment and peer-assessment process.

Student activity product analysis results: “Designing multiple-choice questions.” For the lesson “Multiple-choice methods”, each group of students built a set of multiple-choice questions to assess children (choosing the assessment area and age). The results of the product showed that students fully implemented the steps when devising multiple-choice questions to assess children, such as determining objectives and criteria, analyzing content, creating a test outline, and devising multiple-choice questions. Students clearly defined the assessment objectives, from which they built specific criteria for each assessment area. The content analysis was carried out in a rigorous and logical manner. Students analyzed the necessary content based on clear assessment criteria, from which they identified important aspects to devise questions suitable for each area and age of the children. Specifically, the students considered the areas of children’s development, such as cognition, language, physical, cognitive, social-emotional, and aesthetic domains, to ensure that the multiple-choice questions assessed knowledge, skills, and attitudes and reflect the comprehensive development of the children. During the analysis process, students identified the knowledge, skills, and attitudes that children need to have at a specific age, thereby adjusting the content of the questions accordingly. Students relied on the psychological characteristics of children at a specific age and their ability to absorb, thereby creating assessment questions and stimulating children’s interest and thinking.

Multiple-choice questions were designed based on the multiple-choice outline, from easy to difficult; in addition, the questions were used to perform assessments according to the set goals. Questions were formulated for a variety of situations, exercises, and conversation questions, and especially used vivid, intuitive images.

4.2.2 Competency in observing, analyzing, and processing results

The competency to evaluate, process, and analyze assessment information improved significantly after the experiment. Specifically, Class 01 achieved a mean of 4.53 ($SD = 0.56$) and Class 02 a mean of 4.56 ($SD = 0.54$) for this competency. Results from the observation forms showed that students ensured the necessary elements of the observation process, including recording each stage of the child's development, clearly describing the child's behaviors and reactions in each activity. However, some students had difficulty using appropriate language to describe the development process, instead still using evaluative terms, reducing the objectivity of the observation form. In the analysis stage, students knew how to process information, synthesize, and make comments on children's development. However, they did not pay full attention to describing the development process and only focused on the final results. This shows that students' ability to analyze information needs to be further improved, especially in using descriptive language that accurately reflects what they have observed. Furthermore, the analysis of the results from the observation form needs to be closer connected with the previously set goals to ensure logical and scientific accuracy in the child assessment process.

Student activity product analysis results: "Analyzing children's products." The results showed that students designed a child observation form and combined methods such as observation, conversation by asking a set of questions, and analysis of children's products. Designing an observation form and combining different methods allowed students to collect information from many aspects of children's development. Students demonstrated detailed recording skills, focusing on describing children's behavior and product results. The students recorded children's products in detail, including describing the form, content, and method of implementation. This allowed students to comprehensively monitor the children's process of creating products, from beginning to completion, helping students understand how the children expressed their skills and ideas through the product. The focus on detail in recording demonstrated meticulous observation ability; students recorded not only the results but also the factors that affected children's implementation process. In addition to recording the process, students conducted observations on behavior, reactions, as well as the steps that children took to complete the product. Students paid attention to how children used materials, coordinated motor skills, as well as showed creativity in problem-solving. Process assessment helped students recognize children's special abilities, thereby promoting their potential. Children's product results were analyzed by students based on criteria such as aesthetics, creativity, and the level of educational goal achievement. Students could determine children's level of development in terms of cognition, aesthetics, physical, language, and social-emotional domains. However, in some cases, the students had difficulty in closely linking the assessment goals with the analysis results. Although children's

products were fully recorded, the use of these results to propose further support activities was still limited.

4.2.3 Competency in using assessment results

The results of the experiment showed that the ability of students to use assessment results significantly improved after participating in the experiential learning activities. Specifically, Class 01 had a mean score of 4.46 (SD = 0.61) and Class 02 had a mean of 4.40 (SD = 0.65). Based on the information obtained from observing and analyzing the children's products, students adjusted the teaching objectives to better meet the abilities and needs of each group of children. For example, the assessment results showed that children were still weak in some fine motor skills. In this regard, students would adjust the plan by increasing activities that develop fine motor skills for children, such as holding scissors and pens, using a computer mouse, and drawing. The activities were designed according to levels, from easy to difficult. Students should provide a supportive environment and engage children to practice and train anytime and anywhere. However, some students still had difficulty in proposing specific interventions based on assessment results. Some students proposed activities that are too general, not helping children develop their strengths and weaknesses.

4.2.4 Competency in communicating assessment results to children and parents

The results of the qualitative study after the experiment showed that the students' competency to communicate assessment results to children and parents improved significantly, with a mean score of 4.42 (SD = 0.66) for Class 01 and 4.48 (SD = 0.56) for Class 02. Students knew how to use simple, easy-to-understand language to explain the children's development to parents, as well as listen and receive feedback from parents. Students emphasized that participating in experiential learning activities, such as practicing and training in assessing children at preschools, helped them improve their communication skills and understand the importance of reporting results in a positive and encouraging way. In addition, reporting children's results to parents helped them understand their children's development process and create opportunities for cooperation and participation in supporting the child's education process better. However, some students still had difficulty making children understand the assessment results, especially when having to adjust the language to suit each age group. Some students shared that they were shy and lacked confidence when communicating directly with parents. The reason was that the students had only practiced assessing children for a certain period of time, hence the communication with parents not being as effective as expected. The above results show why teachers need to pay more attention to how to use language and communication methods suitable for each preschool child and parent to help students be more efficient in the child assessment process.

5. Discussion

Data analysis by Tran and Duong (2025) revealed that the ability of Early Childhood Education students to assess child development was generally at an average level ($M = 3.07$). The results also indicated that there were certain limitations in practical exposure within the existing curriculum. The survey results showed that students received the highest score for assessment planning ability, while the ability to report results had the lowest score (Tran & Duong, 2025). Chen and McNamee (2006) mentioned that pre-service teachers often lacked sufficient opportunities for authentic practice in assessment contexts. In this study, the qualitative and quantitative results of two classes of non-controlled experiments showed that students had significant progress in their competency to assess children's development ($p < 0.001$). The results of the quantitative analysis showed that the average score of students' ability to assess children's development increased from the pretest (Class 01: $M = 3.92$, $SD = 0.56$; Class 02: $M = 3.94$, $SD = 0.6$) to the posttest (Class 01: $M = 4.47$, $SD = 0.6$; Class 02: $M = 4.48$, $SD = 0.56$), indicating the effectiveness of the intervention. The data indicated that all components of competency in childhood development assessment for Early Childhood Education students improved after the intervention. Among these, the competency in observing, analyzing, and processing results showed the highest increase, with the mean score rising from 3.93 ($SD = 0.68$) to 4.53 ($SD = 0.56$) in Class 01 and from 3.94 ($SD = 0.68$) to 4.56 ($SD = 0.54$) in Class 02. Of the four groups of competency in assessing childhood development, the competency to use assessment results was assessed to have good scores but the lowest among the four groups.

Students made remarkable progress through conducting assessments and processing information thanks to their participation in active learning activities such as problem-solving teaching, educational games, and practice. These experiences have created conditions for students to apply knowledge effectively in practice, especially in designing assessment tools, observing, recording, collecting, and interpreting information. As a result, students' competency to analyze and process information was significantly improved. These findings are confirmed by Bueno et al. (2010), Couse and Recchia (2015), Decker et al. (2023), Heineke et al. (2013), Hinzdilova et al. (2023), and Mpakirtzis (2012), who emphasized the value of field-based and reflective experiences in developing Early Childhood teachers' professional competencies for Early Childhood Education students. In particular, the findings affirmed the effectiveness of integrating experiential learning activities into university coursework and increasing practice at kindergarten to develop competency in childhood development assessment for Early Childhood Education students (Chen & McNamee, 2006).

The research provided a deeper insight into the process of organizing experiential learning activities to develop competency in childhood development assessment for students. The research results showed a clear improvement in all components of assessment skills, with a notable improvement in the competency of conducting assessments and processing and analyzing the obtained assessment information. This detailed analysis contributed important insights that previous studies may

have missed. In the Vietnamese context, Dang (2024) and Nguyen (2024) proposed measures to develop the professional capacity of preschool education students by combining theoretical study at university and pedagogical training. However, the limitations of the above studies were not empirically studied. Similarly, Trinh (2013) developed a specific process for developing observation skills for Early Childhood Education students. None of these studies developed a process and applied experiential learning forms to develop competency in childhood development assessment for Early Childhood Education students.

6. Conclusion

This study assessed the effectiveness of experiential learning activities in enhancing competency in childhood development assessment among third-year Early Childhood Education students. The result showed that students significantly improved their assessment competency after engaging in experiential learning activities, particularly in planning and conducting assessments. However, their ability to use assessment results was still limited. The study indicated that integrating five types of experiential learning activities—namely observation, games, problem-solving situations, teamwork, and practice—into assessment in the Early Childhood module reinforces theoretical knowledge while enhancing students' practical skills.

To contribute to the completion and further development of the research results obtained, the following future research directions are proposed. First, experiential learning activities should be systematically integrated across various courses, particularly in Early Childhood assessment and pedagogy. Second, field-based practice must be expanded in preschools to enhance students' competency to interpret and apply assessment results effectively, while also improving their communication of findings to parents and colleagues. Third, future research should include longitudinal studies and control groups to further validate the effectiveness of experiential learning and explore its impact on various aspects of child assessment competency.

7. Acknowledgements

The authors would like to thank the third-year Early Childhood Education students at Ho Chi Minh City University of Education who took part in the research.

8. References

Bayat, M. (2010). Use of dialogue journals and video-recording in Early Childhood teacher education. *Journal of Early Childhood Teacher Education*, 31(2), 159–172. <https://doi.org/10.1080/10901021003781247>

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. *Qualitative Research in Psychology*, 3(2), 77–101. <https://doi.org/10.1191/1478088706qp063oa>

Brodie, K. (2013). *Observation, assessment and planning in the early years: Bringing it all together*. McGraw-Hill Education. <https://bom.so/MU4wpX>

Bourdeau, V. D. (2004). 4-H experiential education: A model for 4-H science as inquiry. *The Journal of Extension*, 42(5), Article 29. <https://open.clemson.edu/joe/vol42/iss5/29>

Bueno, M., Darling-Hammond, L., & Gonzalez, D. (2010). *A matter of degrees: Preparing teachers for the pre-K classroom* [Education reform series]. Pew Center on the States. https://www.pewtrusts.org/~/media/legacy/uploadedfiles/wwwpewtrustsorg/reports/pre-k_education/pkneducationreformseriesfinalpdf.pdf

Chen, J.-Q., & McNamee, G. (2006). Strengthening Early Childhood teacher preparation: Integrating assessment, curriculum development, and instructional practice in student teaching. *Journal of Early Childhood Teacher Education*, 27(2), 109–128. <https://doi.org/10.1080/10901020600675083>

Clark, P., & McDowell, G. (2012). *The developing child observation guidebook*. McGraw-Hill. <https://rainbow-nursery.info/wp-content/uploads/2015/06/Developing-child-observation-guide.pdf>

Couse, L. J., & Recchia, S. L. (Eds.). (2015). *Handbook of Early Childhood teacher education*. Routledge. <https://doi.org/10.4324/9781315818245>

Dang, T. M. H. (2024). Ren luyen ky nang quan sat tre cho sinh vien nganh su pham mam non qua hoat dong ren luyen nghiep vu su pham o Truong Cao dang su pham Nam Dinh [Training child observation skills for preschool education students through pedagogical training activities at Nam Dinh Pedagogical College]. *Journal of Educational Equipment: Education Management*, 1(310), 274–276. <https://vjol.info.vn/index.php/tctbgd/article/view/97090>

Decker, K. B., Cook, G. A., Brophy-Herb, H., & Torquati, J. (2023). Students' experiences of reflective practices as pedagogy in Early Childhood higher education. *Journal of Early Childhood Teacher Education*, 44(3), 261–287. <https://doi.org/10.1080/10901027.2021.2020938>

Dewey, J. [1938]. *Experience & education*. [Kappa Delta Pi]. <https://www.schoolofeducators.com/wp-content/uploads/2011/12/EXPERIENCE-EDUCATION-JOHN-DEWEY.pdf>

Fixsen, D. L., Naoom, S. F., Blase, K. A., Friedman, R. M., & Wallace, F. (2005). *Implementation research: A synthesis of the literature*. University of South Florida, Louis de la Parte Florida Mental Health Institute, The National Implementation Research Network. <https://www.researchgate.net/publication/242511155>

Haynes, C. (2007). *Experiential learning: Learning by doing*. University of California, Davis.

Heineke, A., Kennedy, A., & Lees, A. (2013). Preparing Early Childhood educators for the culturally and linguistically diverse classrooms and communities of Illinois. *Early Childhood Research & Practice*, 15(2). <https://ecrp.illinois.edu/v15n2/heineke.html>

Hesser, G. (1995). Faculty assessment of student learning: Outcomes attributed to service-learning and evidence of changes in faculty attitudes about experiential education. *Michigan Journal of Community Service Learning*, 2(1), 33–42. <http://hdl.handle.net/2027/spo.3239521.0002.103>

Hnizdilova, O., Czepil, M., & Karpenko, O. (2023). Praktyka jako niezbędny element przygotowania zawodowego przyszłego nauczyciela placówki wychowania przedszkolnego na wyższych uczelniach Ukrainy [Practical training as a necessary component of future professional preschool teachers' training in higher educational institutions in Ukraine]. *Annales Universitatis Mariae Curie-Skłodowska: Sectio J Paedagogia-Psychologia*, 36(3), 145–155. <https://doi.org/10.17951/j.2023.36.3.145-155>

Hollingsworth, H. L., & Vandermaas-Peeler, M. (2017). 'Almost everything we do includes inquiry': Fostering inquiry-based teaching and learning with preschool teachers. *Early Child Development and Care*, 187(1), 152–167. <https://doi.org/10.1080/03004430.2016.1154049>

Hollis, F. H., & Eren, F. (2016). Implementation of real-world experiential learning in a food science course using a food industry-integrated approach. *Journal of Food Science Education*, 15(4), 109–119. <https://doi.org/10.1111/1541-4329.12092>

John, P. D. (2002). The teacher educator's experience: Case studies of practical professional knowledge. *Teaching and Teacher Education*, 18(3), 323–341.
[https://doi.org/10.1016/S0742-051X\(01\)00072-5](https://doi.org/10.1016/S0742-051X(01)00072-5)

Kolb, D. A. (1984). *Experiential learning: Experience as the source of learning and development*. Prentice Hall. <https://s.net.vn/TfLn>

LaParo, K. M., & Siskind, D. (2022). Practicum student perceptions of major constructs of ECE classroom-based field experiences: Relationships, fit, learning, efficacy, and satisfaction. *Journal of Early Childhood Teacher Education*, 43(3), 450–473.
<https://doi.org/10.1080/10901027.2022.2054033>

Lewin, K. (1951). *Field theory in social sciences*. Harper Row.

Maude, S. P., Catlett, C., Moore, S., Sanchez, S. Y., Thorp, E. K., & Corso, R. (2010). Infusing diversity constructs in preservice teacher preparation: The impact of a systematic faculty development strategy. *Infants & Young Children*, 23(2), 103–121.
<http://dx.doi.org/10.1097/IYC.0b013e3181d3cabf>

McAfee, O., & Leong, D. J. (2011). *Assessing and guiding young children's development and learning* (5th ed.). Pearson.

McKeachie, W. J. (1999). *Teaching, learning, and thinking about teaching and learning*. In J. C. Smart, & W. G. Tierney (Eds.), *Higher education: Handbook of theory and research* (pp. 1–38). Springer Netherlands. https://doi.org/10.1007/978-94-011-3955-7_1

McIntyre, F. S., Webb, D. J., & Hite, R. E. (2005). Service learning in the marketing curriculum: Faculty views and participation. *Marketing Education Review*, 15(1), 35–45. <https://doi.org/10.1080/10528008.2005.1148889>

Ministry of Education and Training (Vietnam). (2018). *Thong tu so 26/2018/TT-BGDDT : Ban hanh chuan nghe nghiep giao vien mam non* [Circular No. 26/2018/TT-BGDDT: Promulgating regulations on professional standards for preschool teachers]. <https://s.pro.vn/RX57>

Mpakirtzis, K. (2012). Education of preschool students in experiential teaching methods and its effect on their educational practices. *Educational Research*, 54, 150–168.

NAEYC (National Association for the Education of Young Children). (2020). *Professional standards and competencies for Early Childhood educators*. <https://s.pro.vn/uudN>

Nguyen, T. C. T. (2024). Ren luyen ki nang danh gia su phat trien cua tre cho sinh vien nganh su pham mam non [Training child development assessment skills for Early Childhood Education students]. *Psychology–Education Magazine*, 163–167. <https://tamlygiaoduc.com.vn/wp-content/uploads/2024/11/11.Edited-24.-TUMAM-NON.-BAI-DANG-BAO.pdf>

Nguyen, T. K. A. (2015). *Danh gia su phat trien cua tre mam non* [Assessment of preschool children's development]. Culture - Art Publishing House. <https://thuvien.sptwnt.edu.vn/Ebookview.aspx?id=2021042800202>

Niemi, H. (2002). Active learning: A cultural change needed in teacher education and schools. *Teaching and Teacher Education*, 18(7), 763–780.
[https://doi.org/10.1016/S0742-051X\(02\)00042-2](https://doi.org/10.1016/S0742-051X(02)00042-2)

Office of Early Childhood Development, Virginia Department of Social Services. (2008). *Competencies for Early Childhood professionals. Virginia's Early Childhood Development Alignment Project*. <https://short.com.vn/MxUT>

Ong, E. T., Aminah, A. Y. O. B., Ibrahim, M. N., Adnan, M., Shariff, J., & Ishak, N. (2016). The effectiveness of an in-service training of Early Childhood teachers on STEM integration through project-based inquiry learning (PIL). *Journal of Turkish Science Education*, 13(Special Issue), 44–58. <http://dx.doi.org/10.12973/tused.10170a>

Pham, T. K. L., & Then, T. L. (2021). Mot so giao phap boi duong, nang cao chat luong dao tao cho sinh vien nganh Giao duc mam non theo huong phat trien nang luc [Some solutions to foster, improve the quality of training for students in the field of preschool education in the direction of capacity development]. *Today's Teaching and Learning Magazine*, 1, 20-21.
http://113.165.166.110:81/bitstream/DL_134679/45163/1/ CVv276K1S032021020.pdf

Phan, T. L. (2019). Bien phap phat trien nang luc thich ung nghe cho sinh vien nganh su pham mam non tai Truong dai hoc Phu Yen [Measures to develop career adaptability for preschool education students at Phu Yen University]. *Phu Yen University Journal*, 22, 56-64.
<https://vjol.info.vn/index.php/pyu/article/view/51365/42196>

Peterson, G., & Elam, E. (2025). *Observation and assessments in Early Childhood Education*. LibreTexts. <https://batch.libretexts.org/print/Letter/Finished/socialsci-42484/Full.pdf>

Professional Impact NJ. (2014). *Core knowledge and competencies for Early Childhood professionals: New Jersey's Unified Professional Development System*. <https://s.pro.vn/jSn3>

Recchia, S. L., Beck, L., Esposito, A., & Tarrant, K. (2009). Diverse field experiences as a catalyst for preparing high quality Early Childhood teachers. *Journal of Early Childhood Teacher Education*, 30(2), 105-122.
<http://dx.doi.org/10.1080/10901020902885604>

Rogers, C. R. (1969). *Freedom to learn: A view of what education might become*. Merrill Publishing Company.

Silberman, M. L. (2007). *The handbook of experiential learning*. John Wiley & Sons. <https://byvn.net/eCdR>

Thorp, E. K., & Sánchez, S. Y. (2013). Infusing cultural and linguistic diversity into pre-service and inservice preparation. In P. J. Winton, J. A. McCollum, & C. Catlett (Eds.), *Preparing effective professionals: Evidence and applications in early childhood and early intervention*. ZERO TO THREE Press.

Tran, T. T. T., & Duong, T. K. O. (2025). Thuc trang nang luc danh gia su phat trien tre em mam non cua sinh vien nganh Giao duc mam non tai mot so truong dai hoc o Viet Nam [Status of Early Childhood Education students' competency in assessing childhood development at some universities in Vietnam]. *Viet Nam Journal of Educational Science*, 1(21), 95-105.
http://vjes.vnies.edu.vn/sites/default/files/khgdvn_-tap_21_-so_01_-95-105.pdf

Trinh, T. T. (2020). Van dung mo hinh hoc tap trai nghiem cua David Kolb trong giang day hoc phan "Giao duc moi truong" cho sinh vien nganh Giao duc tieu hoc, truong dai hoc Tay Bac [Applying David Kolb's experiential learning model in teaching the subject "environmental education" for students majoring in primary education, Northwestern University]. *Education Magazine*, 193-196. <https://byvn.net/hyq2>

Trinh, T. X. (2013). *Ren luyen ki nang quan sat tre cua sinh vien cao dang su pham nganh Giao duc mam non* [Training Early Childhood observation skills of college students in Early Childhood Education]. Ha Noi. <https://byvn.net/L9qs>

Tympa, E., Karavida, V., & Filippa, V. (2021). Facilitating teaching strategies and active learning in Greek Early Years Department students. *Journal of Educational Issues*, 7(2), 56-71. <https://doi.org/10.5296/jei.v7i2.18845>

UNESCO, & SEAMEO. (2018). *Pursuing quality in early learning, vol. 1: Early Childhood Care and Education (ECCE) teacher competency framework for Southeast Asia (SEA)*. United Nations Educational, Scientific and Cultural Organization. <https://unesdoc.unesco.org/ark:/48223/pf0000265271>

UC Davis (University of California Davis). (2011). *5-step experiential learning cycle*.

Urban, M., Vandenbroeck, M., Lazzari, A., Laere, K. V., & Peeters, J. (2012). *Competence requirements in Early Childhood Education and Care* [Public open tender EAC 14/2009 issued by the European Commission, Directorate-General for Education and Culture]. University of East London, Cass School of Education and University of Ghent, Department for Social Welfare Studies.
<https://files.eric.ed.gov/fulltext/ED534599.pdf>

Vicente Sánchez, E., Bravo-Alvarez, M. A., Eguinoa Zaborras, F., & Navarro Hidalgo, J. J. (2019). Improving understanding and approach to developmental disorders in students of the degree in Early Childhood Education: Inclusion of practical activities based on experiential learning and project-based learning. *Educational Alternatives*, 17, 63–69.
<https://www.scientific-publications.net/en/article/1001972/>

Wegner, D. M. (1987). Transactive memory: A contemporary analysis of the group mind. In B. Mullen, & G. R. Goethals (Eds.), *Theories of group behavior* (pp. 185–208). Springer. https://doi.org/10.1007/978-1-4612-4634-3_9

Weng, L., & Cao, J. (2023). Exploration of training the undergraduate preschool education professional talents based on teacher professional identity. *Curriculum and Teaching Methodology*, 6(22), 99–104. <https://doi.org/10.23977/curtm.2023.062216>

Wixson, J. (2021, September 7). *Chapter 6: Observation and assessment*. North Central Michigan College. <https://ncmc.pubpub.org/pub/ece200chapter6/release/1>

Zamora-Polo, F., Corrales-Serrano, M., Sánchez-Martín, J., & Espejo-Antúnez, L. (2019). Nonscientific university students training in general science using an active-learning merged pedagogy: Gamification in a flipped classroom. *Education Sciences*, 9(4), Article 297. <https://doi.org/10.3390/educsci9040297>.

Zaslow, M. J., & Martinez-Beck, I. (Eds.). (2006). *Critical issues in Early Childhood professional development*. Paul H. Brookes Publishing.
<https://search.worldcat.org/title/61445783>

Appendix

SURVEY

COMPETENCY CHILDHOOD DEVELOPMENT ASSESSMENT OF STUDENTS (BEFORE AND AFTER EXPERIMENT)

Dear students!

With the purpose of researching the organization of experiential learning activities to develop competency childhood development assessment for early childhood education students. Please answer the questions related to competency childhood development assessment of early childhood education students below. The information collected is for research purposes only, not for other purposes. We look forward to receiving your participation in answering.

PART 1: PERSONAL INFORMATION

1. You are a student in year:

Third - year

Fourth - year

2. Student code:

PART 2: SURVEY CONTENT

Please rate your level of ability to assess children development: (Please tick one option for each line).

	Evaluation criteria	Level				
		poor	weak	average	pair	good
Planning to assess children's development						
1	Identify the target audience, location, and time of the evaluation					
2	Identify the evaluation objectives					
3	Identify the development areas to be evaluated					
4	Coordinate with stakeholders to develop an evaluation plan					
5	Choose an evaluation method appropriate to the evaluation objectives and content					
Conduct assessment and process, analyze the collected assessment information						
6	Follow the assessment process according to the planned progress					
7	Conduct observations, record and assess accurately and reliably					
8	Process and analyse the assessment information obtained					
Use assessment results						
9	Interpret assessment information obtained					
10	Identify development goals based on assessment results					
11	Plan the next educational program appropriate for the child					

12	Adjust teaching content, methods, and forms					
Inform children and parents of assessment results						
13	Identify information to share with child and parents					
14	Share assessment results					
15	Listen to and incorporate feedback from parents					
16	Provide suggestions and guidance to support child development.					